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Magnetospheres: magnetized vs unmagnetized

The solar wind interaction with unmagnetized bodies is very different to that with magnetized counterparts.

Magnetized — e.g. Earth Unmagnetized — e.g. Venus, Mars, comets
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* Magnetic pressure of dipole stands off * Combination of ion pick up and ionospheric
solar wind flow. currents stand off solar wind.

* Energy and particle deposition in polar

, * No large scale magnetic field to guide
cusp regions.

particles into ionosphere.



Mars’ magnetosphere

Solar wind proton gyro radius comparable to
solar wind stand off distance.
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* Waves generated at ~proton gyro-length scale
at bow shock.
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___MGS (Direct fit)

Wave-particle interactions expected to facilitate
energy deposition from solar wind to
ionosphere.

— — MGS (with Slavin’s method)

We observe these wave particle interactions
with orbiters at Mars, e.g. MGS, MEX, MAVEN...



Previous observations at Mars
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e MAVEN observations

demonstrate that
magnetosonic (MS) waves
can heat dayside planetary
ions and drive significant

ionospheric erosion (Fowler et

al., 2018, MAVEN observations of
solar wind-driven magnetosonic
waves heating the Martian dayside
ionosphere. Journal of Geophysical
Research: Space Physics, 123(5),

4129-4149).

This presentation: study of
same event, demonstrating
that MS waves also heat
ionospheric electrons via
magnetic pumping and pitch
angle scattering.




Electron heating mechanism — magnetic
pumping and pitch angle scattering of the
plasma
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Electron heating mechanism — magnetic

pumping and pitch angle scattering of the

plasma
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Electrons gain
energy over each
pump cycle (non-
adiabatic response)

Lichko et al., 2017,
Magnetic pumping as
a source of particle
heating and power-
law distributions in
the solar wind.




The MAVEN observations
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. Crustal
Overview of event s
B
* Magnetic field: compressive MS —— 7
waves propagate into ionosphere. S.Thermal
Thermal

* Thermal and suprathermal electron __
densities — MAVEN samples the
topside ionosphere.

 Thermal electron temperature. —

 Electric field wave spectra — —
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More detailed plasma observations

* Magnetic compressions produce a pitch angle response
in the suprathermal electrons due to conservation of
the magnetic invariant.

e Suprathermal electron Tperp > Tpara during magnetic
compression.

* Whistlers generated (white lines = 0.1, 0.5, 1* f__, blue

line = lower hybrid). \
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* Whistlers act back on the suprathermal electrons to ?f_s _
isotropize the distribution. o0 B3
* Drives phase shift between (Tperp/Tpara) and 10728 E
compressive wave fronts. . b=

* Breaks adiabaticity of large scale magnetic S 3 8 [n7]
pumping, leading to heating of electrons. §‘§ - 3 € (/o]

* Surpathermal electron temperatures are enhanced by a
few eV.
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More detailed plasma observations

Magnetic compressions produce a pitch angle response
in the suprathermal electrons due to conservation of
the magnetic invariant.

Suprathermal electron Tperp > Tpara during magnetic

compression. \

Whistlers generated (white lines = 0.1, 0.5, 1* f_,, blue

line = lower hybrid). \

Whistlers act back on the suprathermal electrons to
isotropize the distribution.

* Drives phase shift between (Tperp/Tpara) and
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compressive wave fronts.

* Breaks adiabaticity of large scale magnetic
pumping, leading to heating of electrons.

Surpathermal electron temperatures are enhanced by a
few eV.
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Are plasma conditions ripe for wave-particle interactions? (yes)

* foe / fee important for: f . = electron plasma frequency

* Efficiency of wave-particle interactions. f.. = electron cyclotron frequency
e Whistler wave growth rate.
e Pitch ang|e diffusion rate. Superthermal electron temperature Magnetic field Ratio of plasma frequencies

700 —

* Electron distribution functions (next)
demonstrate efficient pitch angle
diffusion.
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e Pitch angle diffusion rate about ~10x
greater for f,, / f.o = 50 vs 120.
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Superthermal electron distribution functions (DF)

Distributions Transverse and
parallel to B.

Solid = maximum in |B].

Efficient pitch angle
diffusion

v

~10x less efficient
pitch angle diffusion

V

Dashed = minimum in |B].

Transverse response of DF similar
for each column. —

2015-04-01/05:54:25

* (Conservation of magnetic
invariant).

Parallel DF enhanced over all
velocities (ie not a single
resonant velocity as occurs for
Landau damping) for first
column.

e Pitch angle diffusion present!
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A summary of the heating process at Mars
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Superthermal electron temperature

* Mars —solar wind interaction generates compressive magnetosonic
waves that propagate into the dayside ionosphere.

d)
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* Conservation of first magnetic invariant leads to Tperp > Tpara for |z {: | \%f\ f\ -
suprathermal electrons during compressive waves fronts. ~ os0 | VV
* Leads to generation of whistler waves. [ = g
* Whistlers act back on electrons to isotropize distribution. e = PN
* Generates phase shift between (Tperp / Tpara) and compressive S R R e == [N

wave fronts. R T A sl IS T
* Breaks adiabaticity of magnetic pumping.

p

e tem
K

* Electrons gain energy over a pumping cycle.
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* MAVEN observations show localized enhancements of a few eV in
suprathermal electron temperature. xmso
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Implications of this heating B
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* lonospheric structure and composition: 4005_
e Suprathermal electrons provide energy to thermal population. :

* Thermal electrons important in ionospheric chemistry.
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* Mars’ ionospheric energy budget: e

* Models of temperature do not match observations in upper 100; o

ionosphere. 100 1000 10000
Electron temperature (K)

* Topside heating long thought to be a possible heating source.
* Magnetic pumping one such heating mechanism.

Choi et al., 1998

* Atmospheric escape to space:
* O,"+e =>0+0|(DR)
* Exothermic reaction: O can have close to or greater than escape
energy.
* DR rate « Te %’



