How dissimilar are the large-scale hydroclimatic precursors and predictability of anomalous monthly rainfall in east and west Japan?

Rajib Maity¹, **Kironmala Chanda**², Riya Dutta¹, Venkata Ratnam Jayanthi³, Masami Nonaka³, and Swadhin Behera³

¹Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India ²Department of Civil Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004, India (kironmala@iitism.ac.in, kironmala.iitkgp@gmail.com)

³Application Laboratory, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan

EGU2020-10496

Session : HS2.4.7 on Hydrological change: Regional hydrological behaviour under transient climate and land use conditions

Background & Motivation

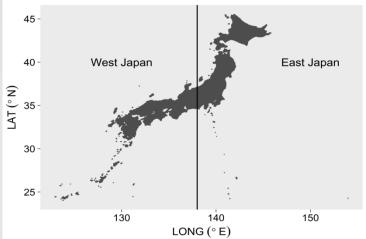
- Variability of rainfall over Japan, is linked to Sea Surface Temperature (SST) anomalies in the Pacific through Pacific-Japan (PJ) and East Asia-Pacific (EAP) teleconnections (Feng and Hu, 2004; Huang, 2004; Ha et al., 2012; Zhang et al., 2014; Wu et al. 2016; Li, 2018)
- Indian Ocean Dipole (IOD) is also known to affect the rainfall variability over Japan (Saji and Yamagata, 2003)
- Below- and above-normal rainfall events over east and west Japan are not always concurrent, neither are their causal agents identical
- Furthermore, rainfall patterns in the two seasons, June to August (summer) and December to February (winter) are quite distinct

Inter- and intra-seasonal rainfall variations in EJ and WJ require an individual assessment of hydroclimatic teleconnection

Objective & methodological approach

To extract the **hydroclimatic teleconnection** features from global SST fields that influence **inter-seasonal and intra-seasonal** rainfall variability in EJ and WJ

For this, we use the concept of Global Climate Pattern (GCP) (Chanda and Maity, 2015)


To utilize the hydroclimatic teleconnection information for the development of a model for the **season-wise prediction** of monthly rainfall for EJ and WJ

For this, we compare 2 approaches:

- 1. Hybrid GM-Copula approach (Dutta and Maity, 2018)
- 2. Machine Learning approach, namely Support Vector Regression (SRV).

Study Area and Data

•

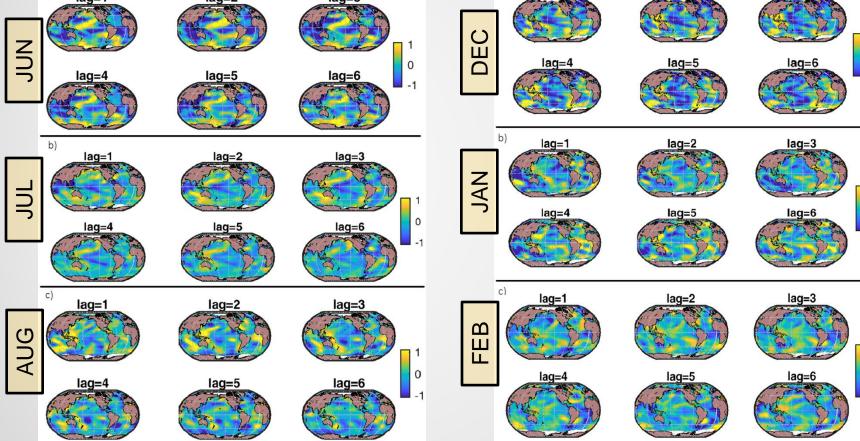
- Climate is different over east and west Japan (JMA: http://www.data.jma.go.jp/gmd/cpd/longfcst/ en/ tourist.html)
- Precipitation pattern is different on the east and west of 138°E (Ohba et al., 2015)

Name of the variable	Source	Spatial Resolution	Period
Sea Surface Temperature (SST) (ºC)	National Oceanic and Atmospheric Administration (NOAA) Extended Reconstructed V5	2º lat x 2º lon	1979- 2015
Rainfall	Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources' (APHRODITE) (Yatagai et al. 2012)	Aggregated over EJ and WJ	1979-2015

Global SST patterns for monthly rainfall in West Japan (WJ) <u>SUMMER</u> <u>UINTER</u> <u>UINTER</u> <u>UINTER</u>

0

-1

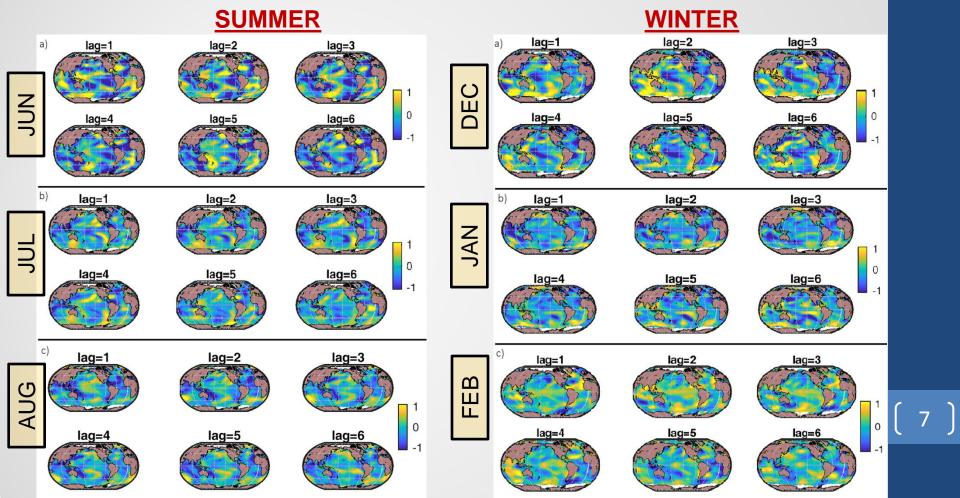

С

0

-1

5

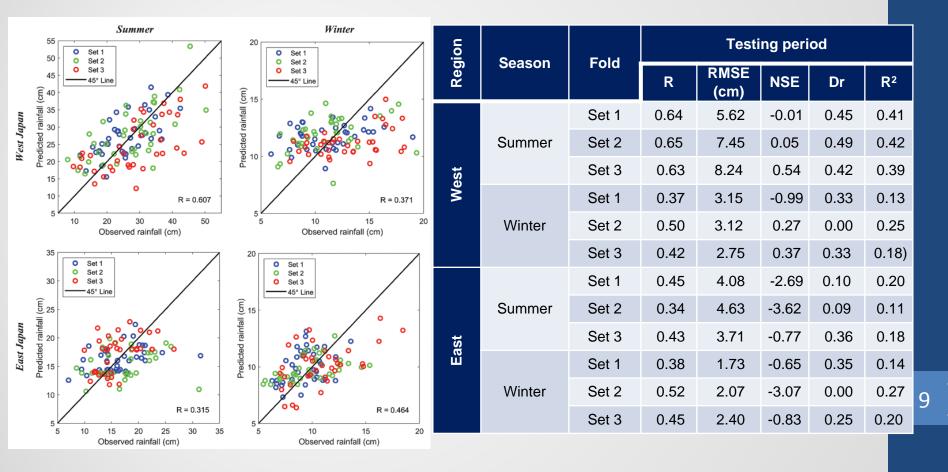
a)

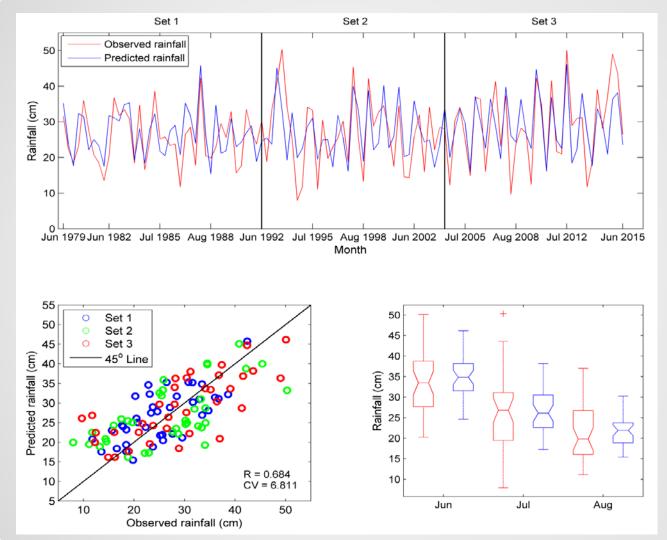


Selected SST zones for west Japan

Season	Month	Symbol	Lag (months)	Latitude	Longitude
		SST1	1	0° to 20° N	180° to 140° W
	lun	SST2	1	25° N to 35° N	145° E to 180°
	Jun	SST3	1	15° S to 5° S	145° W to 130° W
		SST4	2	15° S to 5° N	85° E to 115° E
Summer	Jul	SST1	1	5° N to 15° N	100° E to 125° E
		SST2	2	5° N to 20° N	135° E to 155° E
		SST3	2	25° S to 15° S	80° E to 110° E
	Aug	SST1	1	0 to 15° N	115° E to 145° E
		SST2	1	40° S to 30° S	75° E to 95° E
		SST3	2	35° N to 45° N	160° E to 170° E
Winter	Dec	SST1	1	5° S to 5° N	170° E to 170° W
		SST2	1	45° S to 35° S	80° E to 100° E
		SST3	2	-5° S to 10° N	95° E to 135° E
	Jan	SST1	1	15° S to 0°	45° E to 85° E
		SST2	1	35° S to 25° S	45° E to 85° E
		SST3	1	-15° S to 10° S	180° to 160° W
	Feb	SST1	1	35° N to 45° N	150° W to 140° W
		SST2	2	0 to 20° N	115° E to 125° E
		SST3	2	30° S to 20° S	105° W to 85° W
		6 A			

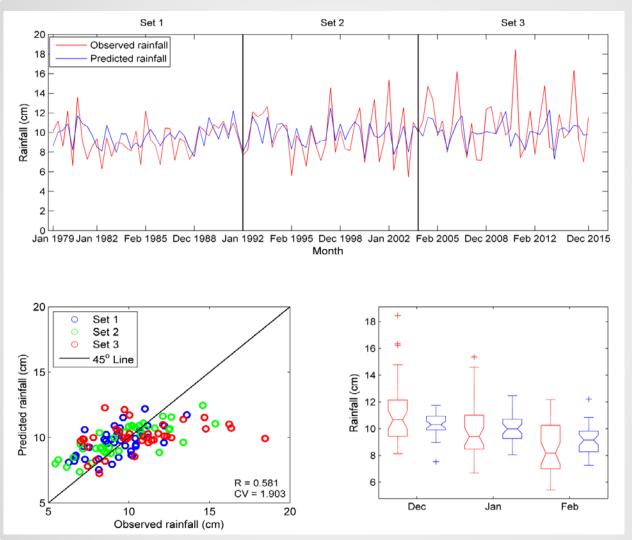
Input variables further selected via the GM-Copula approach are in boldface


Global SST patterns for monthly rainfall in East Japan (EJ)



Selected SST zones for east Japan

Season	Month	Symbol	Lag (months)	Latitude	Longitude
		SST1	1	0° to 15° N	140° E to 155° E
		SST2	1	15° S to 0°	90° E to 125° E
		SST3	1	30° S to 15° S	70° E to 90° E
		SST4	1	75° S to 45° S	165° E to 180°
	Jun	SST5	1	15° S to 0°	130° W to 100° W
		SST6	1	30° N to 40° N	75° W to45° W
		SST7	1	45° N to 65° N	40° W to10° W
		SST8	1	40° S to 25° S	0° to 25° E
Summer		SST9	2	5° N to 15° N	145° Wto125° W
		SST1	1	0° to 15° N	100° E to 130° E
	Jul	SST2	1	5° S to 5° N	60° E to 90° E
		SST3	1	55° S to 35° S	120° E to 150° E
		SST4	1	10° N to 30° N	140° W to120° W
		SST5	1	40° S to 20° S	110° W to80° W
	Aug	SST1	1	15° N to 30° N	140° W to 120° W
		SST2	1	10 ° N to 20° N	120° E to 150° E
		SST3	1	15° S to 0°	135° E to 175° E
		SST4	2	45° S to 30° S	45° E to 75° E
	Dec	SST1	1	5° S to 5° N	60° E to 90° E
		SST2	1	20° N to 40° N	140° W to120° W
		SST3	1	10° S to 5° N	170° E to 170° W
		SST4	1	45 ° S to 25° S	135° Wto115° W
		SST5	2	10° S to 10° N	125° E to 145° E
Winter	Jan	SST1	1	5° S to 10° N	60° E to 85° E
	Jan	SST2	2	45° N to 55° N	170° E to 170° W
	Feb	SST1	1	20° S to 5° S	90° E to 120° E
		SST2	1	15° N to 40° N	40° W to15° W
		SST3	1	30° N to 45° N	145° W to135° W
		SST4	2	0° to 20° N	90° E to 120° E


Performance of Seasonal Prediction using SVR

Summer rainfall Prediction performance using GM-Copula for west Japan

〔10〕

Winter rainfall Prediction performance using GM-Copula for east Japan

Seasonal Prediction performance using GM-Copula

Region	Season	Fold	Testing period				
			R	RMSE (cm)	NSE	Dr	R ²
West	Summer	Set 1	0.68	5.71	0.39	0.58	0.47
		Set 2	0.66	7.46	0.42	0.57	0.43
		Set 3	0.70	7.06	0.48	0.65	0.49
	Winter	Set 1	0.58	2.86	0.31	0.53	0.34
		Set 2	0.50	3.13	0.24	0.51	0.25
		Set 3	0.64	2.28	0.39	0.65	0.41
East	Summer	Set 1	0.65	3.48	0.41	0.60	0.43
		Set 2	0.50	4.04	0.25	0.56	0.25
		Set 3	0.70	3.07	0.47	0.65	0.49
	Winter	Set 1	0.56	1.44	0.27	0.52	0.31
		Set 2	0.75	1.57	0.51	0.67	0.56
		Set 3	0.45	2.64	0.13	0.54	0.20

Findings from the study

- Rainfall anomalies over the west Japan are influenced by the teleconnections originating in the tropical Pacific and Indian Ocean whereas the rainfall anomalies over the east Japan are associated with the high-latitude SST anomalies.
- Using the GCP approach, many teleconnection patterns are identified, which go beyond the traditional teleconnection patterns due to ENSO, El Niño Modoki, AMO and IOD.
- The potential of SVR is appreciable but the GM-Copula approach gives superior prediction performance for rainfall over EJ and WJ. This may be due to the establishment of conditional independence structure among the variables that prunes the redundant information in the predictor pool.
- Satisfactory prediction performance of is obtained for both the regions and for all the months of both the seasons with a slightly better performance in summer.

Further reading:

Maity, R., K. Chanda, R. Dutta, J.V. Ratnam, M. Nonaka, S. Behera (2020), Contrasting features of hydroclimatic teleconnections and the predictability of seasonal rainfall over east and west Japan, Meteorological Applications, Royal Meteorological Society (RMetS), In Press, doi: DOI:10.1002/met.1881.

Selected References

- Feng S and Q Hu (2004). Variations in the Teleconnection of ENSO and Summer Rainfall in Northern China: A Role of the Indian Summer Monsoon. J. Climate 17: 4871–4881. doi: 10.1175/JCLI-3245.1
- Huang G (2004). An index measuring the interannual variation of the East Asian summer monsoon—The EAP index. Adv. Atmos. Sci, 21: 41–52.
- Ha KJ, Heo KY, Lee SS, Yun KS and Jhun JG (2012). Variability in the East Asian monsoon: a review. Meteorological Applications 19: 200-215. doi: 10.1002/met.1320.
- Zhang, M, Qi Y and Hu XM (2014). Impact of East Asian winter monsoon on the Pacific storm track. Meteorological Applications 21: 873-878. doi: 10.1002/met.1423
- Wu B, Zhou T, and Li T (2016). Impacts of the Pacific–Japan and Circumglobal Teleconnection Patterns on the Interdecadal Variability of the East Asian Summer Monsoon. J. Climate 29: 3253–3271. doi: 10.1175/JCLI-D-15-0105.1
- Li H, Zhai P, Chen Y and E Lu (2018). Potential Influence of the East Asia–Pacific Teleconnection Pattern on Persistent Precipitation in South China: Implications of Atypical Yangtze River Valley Cases. Wea. Forecasting 33: 267–282. doi: 10.1175/WAF-D-17-0011.1
- Saji NH, and Yamagata T (2003). Possible impacts of Indian Ocean Dipole Mode events on global climate. Clim. Res. 25: 151– 169.
- Ohba M, Kadokura S, Yoshida Y, Nohara D and Toyoda T (2015). Anomalous weather patterns in relation to heavy precipitation events in Japan during the Baiu season. J. Hydrometeorology, 16, 688-701.
- Chanda K and Maity R (2015). Uncovering Global Climate Fields Causing Local Precipitation Extremes. Hydrological Sciences Journal, Taylor and Francis. doi: 10.1080/02626667.2015.1006232
- Dutta R and Maity R (2018). Temporal evolution of hydroclimatic teleconnection and a time-varying model for long-lead prediction of Indian summer monsoon rainfall. Scientific reports 8(1): 10778.doi: 10.1038/s41598-018-28972-z

THANK YOU