

D. Pagonis,¹ P. Campuzano-Jost,¹ H. Guo,¹ D. A. Day,¹ W. Brown,¹ M. Schueneman,¹ B. Nault,¹ K. Siemens,² A. Laskin,² F. Piel,^{3,4} T. Mikoviny,⁵ L. Tomsche,⁶ A. Wisthaler,^{4,5} J. diGangi,⁶ G. Diskin,⁶ H. Halliday,⁷ J. Nowak,⁵ J. Schwarz,⁸ C. Warneke,⁸ and J. L. Jimenez¹

Slope = 1.36 + R² = 0.96 + + Slope = 0.93 $R^{2} = 0.83$ 40 -40 -20 -20 -20 60 40 20 40 EESI (µg sm⁻³) EESI (µg sm⁻³

> Eichler et al. 2015, AMT 8, 1353-1360 Piel et al. 2019, AMT 12, 5947-5958

Fast Airborne Extractive Electrospray Mass Spectrometry (EESI) Measurements of the Chemical Composition of Biomass Burning Organic Aerosol

Brown et al., Submitted Qi et al. 2019, ACP 19, 8037-8062 Stefenelli et al. 2019, ACP 19, 14825-14848

¹Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA 2Purdue University, West Lafayette, IN, USA ³IONICON Analytik GmbH, Innsbruck, Austria

⁴Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria

- Followed the plume for 7 hours
- Dilution-corrected organic aerosol (OA) increases slightly as smoke travels downwind
- Aerosol levoglucosan decreases with plume age, due to dilution and gas-phase oxidation

• No trend in fire MCE across each transect • Indicates that fire phase wasn't driving the trends in aerosol composition shown above

- Aerosol transmission in the EESI inlet across the altitude range sampled during FIREX-AQ • Calculation includes losses from impaction,
- diffusion, aspiration, and settling • EESI D_{50} is roughly 1 µm at all altitudes, with large particle losses dominated by losses at the PCI entrance orifice

- The University of Colorado EESI-ToF MS and HR-
- 47 mm Filter HR-AMS EESI-TOF Exhaust
- AMS sample from a shared HIMIL inlet and inlet HEPA filter

chemistry

Zhang et al. 2019 AMT, 12, 3761–3776

- The EESI-ToFMS can sample from the main inlet or from a zero air cylinder
- The EESI-ToFMS takes automated background measurements using zero air every 6 minutes
- Both instruments quantify detection limits using HEPA filter every 18 minutes
- The EESI-ToFMS samples zero air when the aircraft is above the instrument's altitude ceiling
- Filter samples were analyzed with ultra high resolution mass spectrometric analysis

Inlet Transmission

100 150 200 250 300 350

m/z

- EESI inlet residence time as a function of sampling altitude for both PCI (pressure controlled inlet) settings used during FIREX-AQ
- Evaporative losses downstream of the denuder are calculated to be < 5% for compounds with C* < 100 µg m⁻³