

SENSITIVITY ANALYSIS OF AN INTEGRATED NUMERICAL FLOW MODEL OUTPUT TO KEY MODEL PARAMETERS USED IN COMMON QUALITATIVE VULNERABILITY ASSESSMENT METHODS

Doummar Joanna^{(1)*} and Hassan Kassem Assaad ⁽¹⁾

¹Department of Geology, American University of Beirut , PO Box: 11-0236/26 Beirut, Lebanon-*jd31@aub.edu.lb; Phone: (+961) 1 350000-4165

D305 | EGU2020-10512

American University of Beirut

UB Introduction

Intrinsic groundwater vulnerability

Topograph) slope Θ Soil media threat 0 barrier Depth to watertable R zone Impact of (net) Recharge vadose zone Aquifer media groundwater aquifer Conductivity resource Retrieved from: https://www.sfu.ca/personal/dallen/drastic_page.html

AUB Introduction

Groundwater Integrated Models

Retrieved from: https://www.hydrosconsult.eu/hydrology/groundwater-modelling/

Sensitivity Analysis

Retrieved from: https://en.wikipedia.org/wiki/Sensitivity_analysis#/media/File:Sensitivity_scheme.jpg

AUB Introduction

AUB Study Area

- 1. Integrated flow model
- 2. Automatic sensitivity analysis
- 3. Time series manual statistical sensitivity analysis

Integrated Flow Model

- Mike She (DHI, 2017) used as numerical engine
- Transient calibrated model (Nash-Sutcliffe=0.77, and RMSE = 0.218 m³/s)

Selection of parameters Integrated Flow Model

Selection of main parameters for testing and variations in the corresponding karst compartments:

- 1. Atmosphere (precipitation)
- 2. Unsaturated zone (lithology, soil, and epikarst)
- 3. Land use and geomorphological features
- 4. Karstic features (highly conductive lens and dolines)
- 5. Saturated zone (lithology)

Automatic Sensitivity Analysis

- Local sensitivity analysis
- Central approximation method

$$\begin{split} S_{i} &= \frac{\partial F}{\partial \theta_{i}} \\ \Delta \theta_{i} &= f_{c} \theta_{i} \\ \Delta \theta_{i} &= f_{c} (\theta_{i,upper} - \theta_{i,lower}) \\ S_{i} &= \frac{F(\theta_{1}, \theta_{2}, \dots, \theta_{i} + \Delta \theta_{i}, \dots, \theta_{n}) - F(\theta_{1}, \theta_{2}, \dots, \theta_{i} - \Delta \theta_{i}, \dots, \theta_{n})}{2\Delta \theta_{i}} \end{split}$$

Where

F is the output measure
θi is the model parameter
Fraction of the parameter interval
Θi,upper and Θi,lower are the specified limits of the parameter

Manual Statistical Analysis

Varied parameters from (COP and EPIK)

Manual statistical analysis based on one parameter variation at a time by applying three methods:

- 1. Preliminary model performance measures
- 2. Variance-based sensitivity assessment methods
- 3. Geomorphology qualitative assessment

Manual Statistical Analysis

1. Preliminary model performance measures

Performance measure		Selection criteria and ranking	Impact on vulnerability
Residual Mean Square Error (RMSE)	$RMSE = \frac{1}{n} \sqrt{\sum_{i=1}^{n} (S_i - C_i)^2}$	RMSE closer to 0	
Nash Sutcliffe coefficient (E)	$E = 1 - \frac{\sum(S_i - C_i)^2}{\sum(S_i - \frac{1}{n}(\sum S_i))}$	Closer to 1	Integrated sensitivity of the calibrated model in response to parameters variations
Coefficient of determination (R ²)	$R^{2} = 1 - \frac{\sum (S_{i} - C_{i})^{2}}{\sum (C_{i} - \overline{C})^{2}}$	Closer to 1	
Recession Coefficient (α)	$\alpha = \frac{1}{t} \ln \frac{Q_{max}}{Q}$	Closer to calibrated	Sustainable volume available for dilution and aquifer response to upper hydrological compartments
Maximum (Q_t)	Maximum (Q_t)	_	
Minimum (Q_t)	Minimum (Q_t)	Closer to calibrated	Sustainable volume available for dilution
Mean (Q_t)	Mean (Q_t)		
Kling-Gupta Coefficient (KGE)	$1 - \sqrt{(r-1)^2 + (\beta-1)^2 + (\gamma-1)^2}$		Model performance and Volume available for dilution

Manual Statistical Analysis

2. Variance-based sensitivity analysis methods (Song et al. 2015)

Local Sensitivity Measure	Ranking Criteria	Relationship with groundwater Vulnerability
Discharged Volume (V) $\frac{\sigma^2(Parameters Variation)}{\sigma^2(V)}$	Local sensitivity and values of the measures are inversely proportional to parameter sensitivity	Volume available for dilution
Mean Spring Discharge (Qt) $\frac{\sigma^2(Parameters Variation)}{\sigma^2(Mean (Qt))}$		Sustainable volume available throughout the hydrological year
Sum of Residuals (R) $\frac{\sigma^2(Parameters Variation)}{\sigma^2(R)}$		Spring discharge variations that can show groundwater quantities deviations

Manual Statistical Analysis

3. Geomorphology qualitative assessment

Slope Steepness	Surface Exposed Material
	Bare-Rock (Fractured
Very Steep (> 35°)	Limestone)
	Doline (Clayey Soil)
	Bare-Rock (Fractured
Very Gentle (0°-5°)	Limestone)
	Doline (Clayey Soil)

- 1. AUTOCAL results and analysis
- 2. Time series statistical analysis results
 - Preliminary statistical assessment
 - Variance based methods assessment
 - Geomorphology and slope impact on groundwater vulnerability
 - Modeling-based parameters ranking compared to qualitative methods coefficients

AUTOCAL Results and Analysis

Graphical representation of AUTOCAL outcomes

 \mathbb{IR}

AUTOCAL Results and Analysis

Most Sensitive Parameters:

•Unsaturated zone soil hydraulics (θs soil saturated moisture content, and α and n
Van Genuchten water retention curve empirical parameters)
•BYP (bypass portion of net rainfall)

Moderately Sensitive Parameters:

•Climatic Parameters: (Degree Day Coefficient (D) and melting temperature) •Hydraulic conductivity of the Aquifer and highly conductive lens

Least to none sensitive parameters:

Vegetation cover

•Epikarst empirical parameters

•Soil hydraulic properties that play a role in fast infiltration other than BYP

Time Series Statistical Analysis Results Preliminary Statistical Assessment

• Preliminary statistical assessment

RMSE: aquifer Sy (least sensitive 0.11 m³/s)

KGE: most sensitive (soil thickness, hydraulic conductivity of aquifer and lens)

Discharge related function: bypass did not affect spring discharge trends

- Conclusions
- 1. Specific yield and saturated moisture content (θ s) variations from the calibrated parameter value have increased groundwater vulnerability;
- 2. Soil thickness is inversely proportional to groundwater vulnerability; and
- 3. Higher hydraulic conductivity values of the highly conductive zone and the aquifer increase groundwater vulnerability.

Time Series Statistical Analysis Results Preliminary Statistical Assessment

• Preliminary statistical assessment

Time Series Statistical Analysis Results Variance Based Methods Assessment

• Variance based methods assessment

Year 1 (2015-2016)

Objective Function	σ ² (parameter) / σ ² (Yearly Discharged Volume)	σ² (parameter)/ σ² (∑r)	σ ² (parameter)/ σ ² (Q mean)	Rank
Varied Parameters				
K lens (m/s)	1.86E-05	1.09E-03	2.40E+00	1
Precipitation	2.97E-05	3.00E-05	2.91E+00	2
Saturated				
moisture content	8.80E-05	2.11E-07	1.13E+01	2
Log(K aquifer				5
(m/s))	2.30E-02	2.30E-02	2.13E-04	4
Temperature	9.20E-02	8.72E-02	9.02E+03	5
Bypass	1.36E-01	1.36E-01	1.75E+04	6
Soil thickness(m)	1.95E-01	1.95E-01	2.52E+04	7
Specific Yield	2.73E-01	2.73E-01	3.52E+04	8

Time Series Statistical Analysis Results Variance Based Methods Assessment

• Variance based methods assessment

Year 2 (2016-2017)

Objective Function	σ ² (par)/ σ ² (Yearly Discharged Volume)	σ² (parameter)/ σ² (∑r)	σ² (parameter)/ σ² (Q mean)	Rank
Varied Parameters				
Precipitation	2.97E-05	3.00E-05	2.91E+00	1
Saturated moisture content (θs)	1.34E-04	1.96E-07	2.28E+01	2
K lens (m/s)	3.12E-05	5.31E+00	5.31E+00	3
Log(K aquifer (m/s))	4.11E-02	5.05E-04	5.05E-04	4
Temperature	9.20E-02	8.72E-02	9.02E+03	5
Bypass	1.50E-01	2.56E+04	2.56E+04	6
Soil thickness(m)	4.81E-01	8.20E+04	8.20E+04	7
Specific Yield	2.30E+00	3.93E+05	3.93E+05	8

Time Series Statistical Analysis Results Variance Based Methods Assessment

• Variance based methods assessment

Variance-based Analysis Ranking

Parameter	Rank
Saturated Moisture Content	1
Precipitation	2
Hydraulic Conductivity of Lens	3
Hydraulic Conductivity of Aquifer	4
Temperature	5
Bypass	6
Soil thickness	7
Specific Yield Aquifer	8

Time Series Statistical Analysis Results Geomorphology and Slope Impact on Groundwater Vulnerability

• Geomorphology and slope impact on groundwater vulnerability

Groundwater Recharge from different slope and geomorphology variations

Time Series Statistical Analysis Results Geomorphology and Slope Impact on Groundwater Vulnerability

• Geomorphology and slope impact on groundwater vulnerability

Bypass flow recharge from different slope and geomorphology variations

AUB Conclusions and Recommendations

Conclusions:

- A. Ranking of parameters:
 - 1. Soil hydraulics factors
 - 2. Climatic factors
 - 3. Aquifer along with highly conductive lens hydraulic factors
- B. Geomorphological features have shown a decent impact on recharge trends and total volume
- C. Vegetation cover have shown negligible impact on vulnerability
- D. Modeling approach more efficient in terms scale and processes
- E. Avoid over estimation of vulnerability classification

AUB Conclusions and Recommendations

Limitations and recommendations:

- A. Applying the global sensitivity approach for analysis
- B. Conclusion depicted from this work shall be only applied on areas of similar environmental settings
- C. Validation of this research's results by applying in other study areas

