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1. Introduction
Climate change and economic growth place increasing
demands on the management of regional and national
waterways. These serve both as part of the drainage
network of the catchment and as transport route for
raw materials and finished goods. These waterways
are often impounded rivers where the management of
the weirs must serve both shipping and flood
protection. The figure shows reaches of a river
separated by weirs.

When tributaries or drainage canals join the river, this
disturbs the state of the system. These disturbances
can only be compensated for by changing the settings
of the weirs. The weirs are usually adjusted at given
intervals. This has implications for the design of the
controller. If the interval between control actions is
relatively long, then the discrete time character of the
controller needs to be explicitly taken into account.
2. Model of the system
To allow rapid analysis and simulation of the system a
simplified model is constructed. The weirs are
modelled by

qw (hup,hcr) = bcw
√
g ·max

(
0,

2
3
(hup−hcr)

)3/2

with crest level hcr, crest width b, and cw a weir
dependent constant; g = 9.8m/s2. We use the
Integrator Delay (ID) model [1, 2, 3] for the reaches, so
we approximate each reach by a pure delay τj followed
by a reservoir with area aj

dh1 (t)
dt

=
qin (t− τ1)−qw,1 (h1 (t) ,w1 (t))+qtr,1 (t)

a1
dh2 (t)

dt
=

qw,1 (h1 (t− τ2) ,w1 (t− τ2))−qw,2 (h2 (t) ,w2 (t))+qtr,2 (t)
a2

dh3 (t)
dt

=
qw,2 (h2 (t− τ3) ,w2 (t− τ3))−qw,3 (h3 (t) ,w3 (t))+qtr,3 (t)

a3

with initial condition

hj (0) = h0,j, j = 1,2,3

where hj is the tail end water level in reach j ; qin (t) is
inflow to reach 1; wj (t) is the crest level of weir j
located at the tail end of reach j ; qtr,j is the flow from
tributary j into a reach. To describe the controller we
introduce the tail end level set-points h∗j and the weir
crest levels w∗j for the design flow rate. The control
time step τst is the time between two calculations of
new weir settings. A simple discrete local linear
proportional controller can now be defined as follows.
For k ∈ N

wj (k +1) = w∗j +cP,j
(
hj (t− τde)−h∗j

)
where τde is the delay between measurement and
control action. We link this to the weir settings by
taking

~w (t) = ~wdiscrete

(⌊
t

τst

⌋)
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Figure 1: Stable cases (cP ≤ 3), time interval around pulse.

3. Canal data
We will consider local discrete proportional controllers for a series of
identical weirs and river reaches. Dimensions: the reach length is 15km;
each reach has a trapezoidal cross section with bottom width 150m and side
slope of 1 in 3; the weir crest width is 300m wide; the setpoint just upstream
of the weir is 10m above the river bottom, and a control time step to be
chosen from 300s≤ τst ≤ 900s. The inflow into the first reach is 500m3/s.
We will use τst = 300s in our tests. After a 24h “warm-up” with the weir crests
one meter below the setpoint we switch on the proportional controller. We
choose cw = 1. Finally τde = 0.
4. A description of the different controllers
When cP = 0, the weirs are fixed in the position corresponding to an
approximate weir discharge of 500m3/s for an upstream water depth of 10m.
When cP > 0, the deviation from the desired tail end water level determines
the increase (or decrease) of the weir crest level at the tail end of that reach

w1 (k +1) = w∗1−cP (h1 (kτst− τde)−h∗1)
w2 (k +1) = w∗2−cP (h2 (kτst− τde)−h∗2)
w3 (k +1) = w∗3−cP (h3 (kτst− τde)−h∗3)

0 10 20
t [h]

−0.50

−0.25

0.00

0.25

0.50

le
ve
l
er
ro
r
[m

]

reach 1

0

25

50

75

100

di
st
ur
ba
nc
e
[m

3
/s
]

0 10 20
t [h]

−0.50

−0.25

0.00

0.25

0.50

le
ve
l
er
ro
r
[m

]

reach 2

0

25

50

75

100

di
st
ur
ba
nc
e
[m

3
/s
]

0 10 20
t [h]

−0.50

−0.25

0.00

0.25

0.50

le
ve
l
er
ro
r
[m

]

reach 3

0

25

50

75

100

di
st
ur
ba
nc
e
[m

3
/s
]

0 10 20
t [h]

−0.50

−0.25

0.00

0.25

0.50

le
ve
l
er
ro
r
[m

]

reach 4

0

25

50

75

100

di
st
ur
ba
nc
e
[m

3
/s
]

0 10 20
t [h]

−0.50

−0.25

0.00

0.25

0.50

le
ve
l
er
ro
r
[m

]

reach 5

0

25

50

75

100

di
st
ur
ba
nc
e
[m

3
/s
]

0 10 20
t [h]

−0.50

−0.25

0.00

0.25

0.50

le
ve
l
er
ro
r
[m

]

reach 6

0

25

50

75

100

di
st
ur
ba
nc
e
[m

3
/s
]

cP=0.0

cP=1.0

cP=2.0

cP=3.0

cP=4.0 tributary 4

Figure 2: Add unstable case cP = 4, note the different vertical scale, time interval starts
when controller is switched on

6. Simulation results
For fixed weir settings, the additional inflow into the river leads to a rise in
water level. This in turn leads to a rise in weir discharge. If the inflow is not
in the last reach, then it leads to a rise in water level in the downstream
reaches later on. In the simulation a temporary non-zero inflow into reach 4
simulates such an additional inflow.
Adding identical local proportional controllers speeds up the return to
setpoint after the inflow from the tributary stops, but cP should be chosen
with care.
If cP is too large, even the small deviation from setpoint at the time when the
controller is switched on is sufficient to initiate oscillations that do not damp
out. The simulations were performed using the Sobek 1D flow simulation
software [4], which is a full 1D hydraulic flow simulation.
7. Discussion
Today careful use of water is of great importance as demand for water goes
up while the availability decreases. This study shows that even for a
relatively simple system and for relatively simple controllers, careless
controller design can lead to unstable systems
During initial experiments it seemed that wave reflection might play a role
under some circumstances. That would imply that an Integrator Delay Zero
(IDZ) model [2] is needed instead of the ID model.

6. Future plans
A combination of the theory provided by [2] and [5] will
be applied to predict the boundary between stable and
unstable control systems.
Integraton of the IDZ model into this is also foreseen.
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