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Introduction
Constraints on core formation from estimated core/mantle chemical partitioning
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Introduction

▶ Can we tell something about the temperature of the Core at the end of accretion
from the constraints on Peq,Teq ?

▶ Or, alternatively, can we use the Core heat content as an additional constraint on
the P,T conditions during core formation?
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Method

1. Geochemical modelling
Generate a set of geochemically consistent accretion histories
Peq(f),Teq(f) (Monte-Carlo inversion)

2. Thermal modelling
For each Peq,Teq accretion trajectories,
▶ Estimate, for each metal mass addition, the evolution of its

temperature as it travels toward the core.
▶ Add the temperature increase due to compression associated to

the subsequent growth of the Earth.
▶ Either

⋆ keep the metal where it has been added
⋆ assume the core has been well-mixed by impacts
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1. Geochemical modelling
Core formation box model

Core

Mantle

Imp. core

Impactor
Imp. mantle

Equilibration

”Dilution” of the metal phase ∆ =
mass of equilibrated silicates
mass of equilibrated metal
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1. Geochemical modelling
Geochemically consistent (Ni & Co) accretion histories
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2. Thermal modelling
Thermal evolution of the metal phase

1. Start with initial conditions Peq(f),Teq(f),
assumed to be the conditions at the base of the
magma ocean.
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2. Thermal modelling
Thermal evolution of the metal phase

2. The descent to the Core through the Mantle
(as a metal diapir): Peq(f) → Pcmb(f)

Mdcp
dT̄
dt = Compression Heating

+ Heat exchange with silicates
+ Dissipative heating

Only a fraction ϵ of the total dissipation
happens in the metal phase:

Φ = −ϵ
dEp
dt
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2. Thermal modelling
Thermal evolution of the metal phase

3. Compression heating due to subsequent growth
of the Earth: Pcmb(f) → Pfinal magma ocean

crystallized
mantle

Peq(f),Teq(f)

Pcmb(f)



7

2. Thermal modelling
Thermal evolution of the metal phase

4. Assume the core to be mixed (impacts...),
additional dissipation.

⇒ Tcmb
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2. Thermal modelling
Diapir model

▶ Stokes velocity
▶ Heat flux from diapir to mantle : Nu ∼ Pe1/2

▶ Dissipation Φ = ηm
(
∇v +∇vT) : ∇v

ρs, ηs

ρm, ηm
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Silicate Mantle

Negligible dissipative heating in the diapir
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Results
Perfect equilibration
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Results
Effect of imperfect equilibration
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Conclusion

1. Results:
▶ We can find geochemically consistent Peq,Teq trajectories which are consistent with estimates

of the current core temperature...
... but many give a core temperature which is much too low.

⇒ the core heat content can be used as a constraint on Earth’s accretion conditions
Favours accretion histories with low equilibration pressure in the first ∼ 80 − 90% of
accretion, and high equilibration pressure in the last 10 − 20%, which are consistent with
the Moon-forming giant impact scenario.

2. Issues/difficulties
Requires a number of assumptions:
▶ on the mechanisms of metal/silicates separation
▶ on the interpretation of the Peq,Teq conditions
▶ the results are somewhat sensitive to the assumed physical properties of iron
▶ ...


