

Laser Ranging Interferometer on GRACE Follow-On: Current Status Vitali Müller for the LRI Team

GRACE Follow-On

- Collaboration between NASA (Germany) and GFZ (Germany)
- Launched on 22 May 2018
- SpaceX Falcon 9 launcher, ride-share with 5 Iridium NEXT satellites

https://www.youtube.com/watch?v=Tvdz5yFSwCY

Launching U.S./German GRACE-FO (live broadcast)

Nearly perfect orbit insertion of GRACAE FO satellites

Payload of GFO similar to GRACE, except ...

EGU General Assembly - online

Laser Ranging Interferometer (LRI)

Technology demonstrator on-board GRACE Follow-On

- $^\circ~$ Inter-satellite biased ranging with a noise req. of $\lesssim 80 {\rm nm}/\sqrt{{\rm Hz}} \times {\rm NSF}(f)$
- First optical inter-satellite ranging interferometer 282 THz ~ 1064 nm
- Heterodyne Interferometry: 4...16 MHz
- Transponder scheme in comparison to Dual One-Way Ranging
- Weak-light interference: picoWatt level (worst-case)
- LRI offers yaw & pitch information w.r.t. line-of-sight

LRI demonstrator less strict requirements on lifetime, reliability, redundancy

- Joint US & German project
 - Laser Ranging Processor LRP (JPL), Laser (Tesat), Frequency Stabilization Reference (Cavity, Ball Aerospace)
 - : Optical Bench (STI), Photoreceiver (DLR) Triple Mirror & Beam Steering (STI/Airbus)
- Important step towards inter-S/C laser interferometery for future missions
 - Gravimetric (GRACE-2, NGGM)
 - Gravitational Wave detection (LISA)

LISA satellites, S. Barke / U Florida

Introduction to LRI

Vitali Müller

EGU General Assembly - online

Instrument Status

- The LRI is functional and delivers low-noise measurements of inter-satellite range (& range-rate)
 - After post-processing: noise level at 200 pm/rtHz above 1 Hz Fourier frequency
 - Paper on LRI's in-orbit performance published incl. basic strategy for deglitching
- Satellite pointing information in yaw and pitch can be derived from LRI's steering mirror data
- No degradation of instrument performance visible from launch until now (May 2020)
 - Signal-to-noise ratio (carrier-to-noise density, CNR) well above the requirement of 70 dB-Hz
 - LRI has no consumables
- LRI data (level1a+b) is publicly available together with other GRACE-FO data through
 - https://podaac.jpl.nasa.gov/
 - https://isdc.gfz-potsdam.de/
- Since LRI is a new instrument, a few issues with the level 1a+1b data have not been resolved yet
 - LRI team is working together with SDS/JPL to improve data quality
- Instrument characterization is ongoing
 - Tilt-to-length coupling

Details on some points are shown on next slides

PHYSICAL REVIEW LETTERS 123, 031101 (2019)

Editors' Suggestion Featured in Physics

In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer

 Klaus Abich,¹ Alexander Abramovici,² Bengie Amparan,³ Andreas Baatzsch,⁴ Brian Bachman Okihiro,² David C. Barr,² Maxime P. Bize,² Christina Bogan,³ Claus Braxmaier,⁴ Michael J. Burke,⁷ Ken C. Clark,² Christian Dahl,⁴ Katrin Dahl,⁴ Karsten Danzmann,⁵ Mike A. Davis,³ Glenn de Vine,² Jeffrey A. Dickson,⁷ Serge Dubovitsky,² Andreas Eckardt,⁶ Thomas Ester,⁷ Germán Fernández Barranco,⁵ Reinhold Flatscher,⁶ Frank Flechtner,⁹¹⁰ William M. Folkner,² Samuel Francis,² Martin S. Gilbert,² Frank Gilles,⁴ Martin Gohlke,¹ Nicolas Grossard,¹¹ Burghardt Guenther,⁶
 Philipp Hager,⁴⁴ Jerone Hauden,¹¹ Frank Heine,⁷ Gerhard Heinzel,^{5,4} Mark Herding,⁴ Martin Hinz,¹² James Howell,³ Mark Kasumura,³ Marina Kaufer,⁴ William Klipstein,² Alexander Koch,⁵ Micah Kruger,⁸ Kameron Larsen,² Anton Lebeda,¹³ Arnold Lebeda,¹³ Thomas Leikert,¹² Carl Christian Liebe,² Jehhal Liu,² Lynette Lobmeyer,³ Christoph Mahrdt,^{5,4} Thomas Mangoldt,⁶ Kirk McKenzie,²⁴ Malte Misfeldt,⁵ Philip R. Moton,² Vitali Miller,⁵ Alexander T. Muray,² Don J. Nguyen,² Kolja Nicklaus,⁴ Robert Pierce,³ Joshua A. Ravich,² Gretchen Reavis,³ Jens Reiche,⁵ Josep Sanjuan,¹ Daniel Schütze,⁵⁴ Christoph Seiter,⁷ Daniel Shaddock,^{2+*} Benjamin Sheard,⁵⁺⁺ Michael Sileo,³ Robert Spero,⁷ Gary Spiers,⁶ Gunnar Stede,⁵⁺⁺ Michelle Stephens,³⁴ Andrew Suton,² Joseph Trinh,² Kai Voss,⁴ Duo Wang,² Rabi T. Wang,² Brent Ware,² Henry Wegener,⁵ Stev Winisch,⁷ Christopher Woodruff, Bernd Zender,⁶ and Marcus Zimmerman¹²

plot start: 2020-04-23 00:00:00.000 UTC, 1271635218.00 GPS, 640872018.00 GrGPS plot end: 2020-04-30 23:59:59:000 UTC, 1272326417.00 GPS, 641563217.00 GrGPS data start: 2020-04-23 00:00:3420 UTC, 12716352214 2G FS, 640872021 42 GrGPS data end: 2020-04-30 07:46:14.529 UTC, 1272267992.53 GPS, 641504792.53 GrGPS

CNR GF1

EGU General Assembly - online

LRI data availability

- Table: each row is a month; green means ranging data has been recorded
 - July December 2018: Anomaly with IPU on GF2

- Feb March 2019: On-Board Computer on GF2 issue
- April 2019: 4 days of diagnostic scans by LRI

- December 2019: 2 days of diagnostic scans
- January and February 2020: hickup with GPS/On-Board-Computer on GF2

Large gaps not related to LRI, caused by non-nominal pointing (e.g. safe mode) of S/C

EGU General Assembly - online

Known issues with LRI RL04 Level1A+B data

Level1A:

0

- LRI Housekeeing (LHK1A) has a few columns with incorrect time-tag, e.g. values have not been converted properly from clock ticks to nanoseconds
- the time-tags of the LRI ranging data (LRI1A) have 1 nanosecond resolution, however, LRI samples are recorded at a non-integer nanosecond rate.
- Level1B: most interesting for geodesy community, can be used in gravity field recovery
 - LRI1B data product: 2 second regular sampling in GPS time-frame, biased instantaneous range
 - RL04: the conversion from LRI1A to LRI1B comprises re-scaling (conversion from phase to length), timeshifting, and deglitching
 - The current deglitching scheme employed in RL04 LRI processing has some deficiencies, which yields on some days -residual glitches and/or incorrect scale and/or incorred time-offset
 - GRACE FO Science Data System (SDS) is working to resolve the issue
- Some issues in level1 data might only be resolved in the next release (RL05) according to current assessment by SDS
 - Thus, if you are working with GRACE Follow-On LRI data, we are happy to share work-arounds and give support where possible. Write to vitali.mueller@aei.mpg.de
- The AEI Hannover has derived an alternative LRI1B dataset for January 2019, which can be used to assess the LRI data quality
 - See https://meetingorganizer.copernicus.org/EGU2020/EGU2020-15569.html
 - Improved deglitching & light-time-correction, different scale factor estimation,

AEI is preparing to generate more LRI1B datasets

10

LRI Transponder Scheme

- Role of Master and Transponder interchangeable
 - Both S/C equipped with frequency stabilization unit (Cavity)
- Transponder S/C
 - High-gain frequency-locked loop with 10 MHz frequency offset
 - \rightarrow keeps frequency constant & phase variations< 100 pm/ \sqrt{Hz}
 - \rightarrow phase readout sensitivity a few 10 pm/ \sqrt{Hz}

Basic working principle of LRI: Master and Transponder

- Master S/C
 - Active laser frequency stabilization
 - Measured Frequency
 ~ 2x Doppler + frequency offset
- (Laser) frequency noise suppression in the optical domain (different for DOWR)
 - Single data stream for ranging
 - ° Subtraction of linear phase ramp in L1A \rightarrow L1B

07.05.2020

LRI Phase Jumps / Glitches by ACT usage

- LRI ranging data exhibits steps/jumps/glitches, which are correlated with / caused by attitude control thruster (ACT) usage
 - Mainly roll thrusters on the master satellite, other thrusters and thrusters on transponder satellite cause jumps only sporadically
- Most of the phase jumps can be removed from the ranging data in a "physical way", because the same jump appears with the same amplitude on both satellites.
 - Shape of the jump = step response processed by a decimation (low-pass) filter
 - The LRI on transponder is supposed to measure zero (when ramp removed), but it measures a jump.
 - Forming the difference "Transponder-Phase Master-Phase" with correct time-delay
 - would completely remove the jumps, if sampling rate of LRI range data would be >> 10 Hz.

EGU General Assembly – online

LRI Phase Jumps / Glitches by ACT usage

- LRI ranging data exhibits steps/jumps/glitches, which are correlated with / caused by attitude control thruster (ACT) usage
 - Mainly roll thrusters on the master satellite, other thrusters and thrusters on transponder satellite cause jumps only sporadically
- Most of the phase jumps can be removed from the ranging data in a "physical way", because the same jump appears with the same amplitude on both satellites.
 - Shape of the jump = step response processed by a decimation (low-pass) filter
 - The LRI on transponder is supposed to measure zero (when ramp removed), but it measures a jump.
 - Forming the difference "Transponder-Phase Master-Phase" with correct time-delay
 - would completely remove the jumps, if sampling rate of LRI range data would be >> 10 Hz.
 - Due to 10 Hz sampling rate & occurrence of step response not locked to sampling clock
 - Phase jumps appear different on master and transponder (see red dots)

Vitali Müller

EGU General Assembly - online

LRI Transponder Phase & Deglitching Transponder-Fit

On short time scales without attitude thruster activations

 $^\circ$ Noise below 100 pm/ $\sqrt{\text{Hz}}$

Deglitching algorithm

On longer time scales:

- Phase jumps appear with random amplitude (higher amplitudes are less likely, most jumps < 1 μm)
- Correlated with attitude control thruster usage, mainly roll thruster on master
- Transponder phase jumps appear with same amplitude on master side
 - $\rightarrow\,$ feature of light that propagates between S/C
- Fit an analytical model ("template") of the glitch to the transponder data to obtain amplitude and time offsets;
- usually single phase jump with 2-parameter-fit: 1 amplitude, 1 time offset
- sometimes double-phase jump with two close-by jumps (separation < 100 msec);
 4-parameter-fit: 2 amplitudes, 2 time offsets

Deglitching step 1: fit model parameters to transponder data

Vitali Müller

EGU General Assembly - online

LRI Phase Jumps Removal

Step 2: Remove phase jump using glitch model from master and transponder

- subtraction from master phase re-uses parameters from transponder-fit, but additional delay between master and transponder clock is estimated
 - This delay is highly correlated with USO clock difference (CLK1B_C.eps_time-CL1B_D.eps_time)

- Deglitching algorithm at AEI reduces phase jump by a factor of ~1000.
- LRI team has ideas to mitigate these phase jumps at the flight software level
 - Method 1: change parameters of laser ranging processor for laser frequency control
 - Method 2: update the flight software to use phase-lock instead of frequency-lock

Mitigation has currently low priority, since post-processing is known to work

LRI: Attitude Induced Errors

LRI was designed to have a small rotation-to-pathlength coupling

- Due to triple mirror assembly (TMA) and optical bench working principle
- TMA vertex ("phase center") separated from physical structure
 - \rightarrow co-located with CoM/ACC reference point,
 - \rightarrow lever arm expected to be of the order of ~100 µm (x,y,z)
 - $\rightarrow\,$ coupling at the level of ~ 100 $\mu m/rad$ and 100 $\mu m/rad^2$ in yaw & pitch
 - \rightarrow KBR antenna offset correction: a few 100µm/rad & 1.4m/rad² in yaw & pitch
- Still expected to be dominating noise source at low frequencies
- Long-term ranging data & center-of-mass calibration maneuvers
 - \rightarrow expectations are met.
- Since the offset between TMA vertex and ACC RP is considered to be static, LRI coupling factors are useful as an independent mean to track the S/C center of mass position in two directions.

LRI: Attitude Induced Errors

Paper (accepted) on this topic will appear soon in Journal of Spacecraft and Rockets

Estimating Tilt-to-Length Coupling in the GRACE Follow-On Laser Ranging Interferometer

Henry Wegener * and Vitali Müller[†] and Gerhard Heinzel[‡] and Malte Misfeldt[§] Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 30167 Hannover, Germany Leibniz Universität Hannover, 30167 Hannover, Germany

Fig. 7 Amplitude spectral density of LRI range and TTL error, from a 9-day segment during April 2019. Linear TTL coupling is based on our estimation results from the CMC executed on 24 April 2019 (cf. table 1).

Figure illustrates the attitude-induced errors in the range spectrum

Vitali Müller

LRI Signal and Noise – Time Domain

Which parts are noise and which parts are signal?

07.05.2020

GRACI

13

LRI Signal and Noise – Time Domain

Which parts are noise and which parts are signal?

GRACI

14

LRI Signal and Noise – Time Domain

Which parts are noise and which parts are signal?

GRACI

15

LRI Signal and Noise

- Laser Frequency Noise limits LRI at high frequencies
- Instrument noise at low frequencies (< 35 mHz) difficult to evaluate</p>
- Noise as low as 200 pm/ \sqrt{Hz} at high frequencies > 1 Hz

LRI resolves within 1 second distance changes of the size of a single Helium atom

Max Planck Institute for Gravitational Physics – ALBERT EINSTEIN INSTITUTE

LRI Signal and Noise

- Range changes from non-gravitational accelerations are present between 35 .. 200 mHz
- Tilt-To-length coupling is projected to limit at low frequencies (< 10 mHz)
- Time-Variable (TV) gravity field signal much smaller than total measured signal

Effect of scale factor uncertainty not shown here

GRACI

17

Modifications of LRI for future missions

- Disclaimer: Points on this slide may not represent the views of the whole "LRI team".
- The GRACE Follow-On Laser Ranging interferometer (tech-demo) works very well
 - Provides low-noise measurements of the inter-satellite range
 - Provides yaw and pitch measurements of satellite attitude with respect to line-ofsight
 - No degradation of performance observed within the first ~ 2 years of in-orbit operation
- LRI could fly as-is in future GRACE FO-like missions, but some lessons learned
 - More thorough characterization & mitigation of (thruster-induced) vibrations onto LRI
 - avoid LRI phase jumps
 - similar problem with regard to accelerometer
 - Iodine frequency reference instead of cavity would eliminate scale factor uncertainty for LRI
 - use gold standard/definition of "1 meter"
 - Dedicated laser link acquisition sensor could reduce complexity of current laser link acquisition scheme
 - Feedback of LRI yaw and pitch pointing information into satellite attitude control could reduce attitude-induced ranging errors

A future mission could use LRI as only mean for ranging, LRI would need redundancy

Summary & Remarks

- LRI ranging noise well below the 80 nm/ \sqrt{Hz} requirement
 - As low as 200 pm/ \sqrt{Hz} at high frequencies (>1 Hz)
- Observed phase jumps correlated with attitude thruster activations
 - Phase jumps can be removed from the data & are partly removed in Level-1B
 - Other outliers such as cycle slips are very rare
- LRI provides attitude information in yaw and pitch w.r.t. the line-of-sight
 An alternative instrument to track CoM shifts (in two directions)
- Carrier-To-Noise ratio (signal strength) very close to the maximum
 Optimal alignment of laser beams, low optical losses
- No degradation of signals observed between June 2018 and (today) May 2020
- LRI demonstrated feasibility of inter-spacecraft laser interferometry
 - Ready to become a primary instrument in a NGGM or GRACE-2 mission
 - Minor modifications have been discussed

Thank you for your attention

Vitali Müller

EGU General Assembly - online