

UNIVERSITY OF ICELAND

EGU2020-10569©Parameswaran et al, 2020. All rights reservedSeismic and geodetic response to crustaldeformation in Krísuvík volcanic system,
southwest Iceland

Revathy M. Parameswaran^{1*}, Ingi Th. Bjarnason^{1,2}, Freysteinn Sigmundsson² ¹Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland ²NordicVolcanologicalCenter(Nordvulk),Institute of Earth Sciences,University of Iceland, Iceland

*Email: revathy@hi.is

Disclaimer: Ongoing research. Results pending due delay in funding following COVID-19 outbreak

Tectonic backdrop of Southwest- and South-Iceland (SW-S-Iceland)

Modified after Sigmundsson et al. (2018)

- Icelandic plate boundary is the aerial extension of Mid-Atlantic Ridge (MAR).
- Complexity due to interaction with Icelandic hotspot
- Spreading, volcanic zones offset by transform zones
- 18-19 mm/yr spreading (NUVEL-1A)

The red solid and dashed lines depict the approximate structure of the plate boundary.

The black dashed box includes the study areas – Reykjanes Peninsula (RP) and South Iceland Seismic zone (SISZ).

Other abbreviations: TFZ=Tjörnes Fracture zone; NVZ=Northern Volcanic Zone; ÖSVZ=Öræfajökull-Snæfell Volcanic Zone; EVZ=Eastern Volcanic Zone; WVZ=Western Volcanic Zone; HVZ= Hofsjökull Volcanic Zone; EVFZ=Eastern Volcanic Flank Zone; SVZ=Snæfellsnes Volcanic Zone; RR=Reykjanes Ridge.

Revathy M. Parameswaran

Ref: Parameswaran et al., 2020a; Revision under review

© Parameswaran et al, 2020. All rights reserved

Revathy M. Parameswaran

Email: revathy@hi.is

Example: Hengill - SISZ (Hjalli-Ölfus area) interaction

Events from July 1991 to December 1999.

Interaction possibly due to an inflation episode in Hengill from 1994-1998 (e.g., Feigl et al, 2000)

Is the Ölfus region a transition between the RP, SISZ, and

4/15

Thursday 7th May 16:45 - 18:15 (CET)

(Interseismic stress field variations in Hjalli-Ölfus, SW Iceland)

©Parameswaran et al, 2020. All rights reserved

Email: revathy@hi.is

SM 6.5

Comments, questions, and ongoing research

- EGU2020-8521 Seismic analysis and stress inversions in Ölfus indicate spatio-temporal variations in stress-field.
- Is there a similar volcano-lowland interaction in South Iceland? Krísuvík (Reykjanes Peninsula) ٠
- Krísuvík Transtensional rift/transform zone: 'Bookshelf' faulting ٠
- **Methodology in #8521** Seismic analysis using data from 2007-2016 (with Bjarnason and team) ongoing ٠
- Geodetic analysis using data from T117 and T034 track of TerraSAR-X from 2009-2019 (with Freysteinn Sigmundsson and team) **ongoing** Preliminary results

Ref: Parameswaran et al., 2020b; in preparation

Overview of the Reykjanes Peninsula (RP)

- The oblique boundary exhibits left-lateral and extensional faulting (Clifton and Kattenhorn, 2006).
- Seismically active centres: Reykjanes, Svartsengi, Fagradalsfjall, Krísuvík, and Brennisteinsfjöll.
- Fissure swarms: Reykjanes, Krísuvík, and Brennisteinsfjöll.
- Krísuvík geothermal system has hosted inflation/deflation episodes, fissure swarms, and consequent seismic sequences.

EGU 2020 TS 5.1-10569

Seismic stress inversion from 1997-2006 over the length of RP

Ref: Keiding et al., 2009

- Stable directions of σ_3 , and greatest compressive horizontal stress (Shmax)
- Western RP has an extensional stress state, with some obliquity toward strike slip.

- Fagradalsfjall area has a stress state that appears to be both strike slip and extensional.
- The eastern Fagradalsfjall area has a stress state that is mostly strike slip.
- Eastern RP has an oblique strike-slip stress state, with relatively large confidence regions.
- Krísuvík area has oblique strike-slip stress states, with the optimal σ_1 plunging around 30° toward SW.

Ongoing (Results pending):
Variation of stress field in Krísuvík using spatial and temporal grids (2007-2016).Methodology in EGU2020-8521©Parameswaran et al, 2020. All rights reserved

Geodetic measurements of deformation in RP (InSAR)

Ref: Keiding et al., 2010

- Residual mean LOS fields generated using Envisat images indicate eastward velocities across the plate boundary.
- They also indicate a slight uplift to the SE part of the peninsula in all three time-periods.

- Mild subsidence in Svartsengi from 2003-2005; possibly related to regional subsidence along the central plate boundary zone.
- Marked subsidence in Reykjanes from 2006-2008 due to geothermal fluid extraction.
- Inflation signal in Krísuvík from 2006-2008; either due to geothermal overpressure or slow magmatic intrusion.

Ongoing (preliminary results): StaMPs analysis of TerraSAR-X data from 2009-2019

Revathy M. Parameswaran

Preliminary analysis of TerraSAR-X data from Krísuvík (2009-2019)

- Subsidence: high-wavelength colours
- Inflation: low-wavelength colours

EGU 2020 TS 5.1-10569

- 2009-2011 shows a period of inflation followed by deflation.
- The inflation is a continuation from 2008 as described in Keiding et al. (2010).
- It is also coincident with large seismic swarm in February 2011, with the largest event to be recorded was M4.2 (Michalczewska et al., 2012: AGU 2012, V33A-2843)

TerraSAR-X data were provided by the German Aerospace Center (DLR), through the Icelandic Volcanoes Supersite project, supported by the Committee on Earth Observing Satellites (CEOS).

In recent news...

EGU 2020 TS 5.1-10569

- Heightened seismicity and crustal uplift (up to 8 cm till date) recorded near Svartsengi geothermal system.
- Activity started in January 2020 near Grindavík close to Svartsengi.
- Migration of seismicity to Reykjanes in March 2020, and back to Svartsengi in April 2020.
- Current hypothesis: magma movement at 8-13 km depth

Courtesy: Icelandic Meteorological Office (IMO); www.vedur.is

Therefore, in light of recent productivity in RP, and the symbiotic relationship between crustal deformation and seismicity in Krísuvík, the following studies are underway:

- Seismic relocations
- stress inversions
- focal mechanism analysis
- crustal deformation (InSAR)
- Modeling deformation related seismicity

We look forward to your comments and suggestions on this ongoing study!

Courtesy: Icelandic Meteorological Office (IMO); www.vedur.is