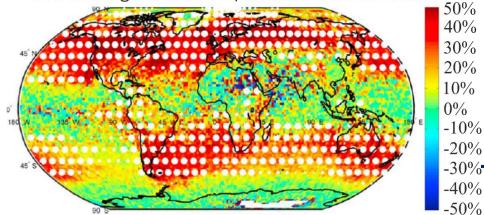
Surface Tension of Surfactant-Containing, Finite Volume Droplets

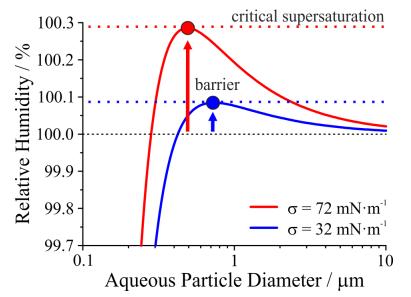
Bryan R. Bzdek¹, Jonathan P. Reid¹, Jussi Malila², and Nønne L. Prisle²

¹School of Chemistry, University of Bristol ²Nano and Molecular Systems Research Unit, University of Oulu

> European Geophysical Union 5 May 2020

This display describes key results from a recent paper: <u>Bzdek et al., PNAS, 2020</u>





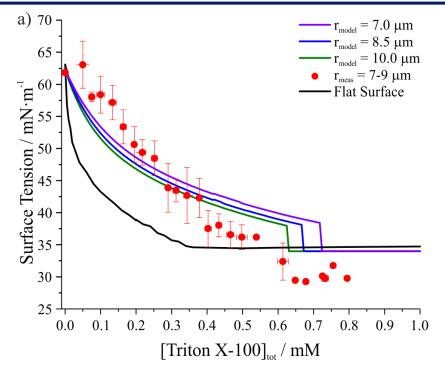
Surface Tension Is Key for Cloud Droplet Activation

- Surface tension influences critical supersaturation
- Surfactants are key components of aerosol composition (e.g. Gerard, EST, 2016; Kroflic, EST, 2018; Facchini, Nature, 1999)
- Surface-bulk partitioning of surface active molecules alters the Köhler curve (e.g. Sorjamaa, ACP, 2004; Petters and Petters, JGR, 2016)

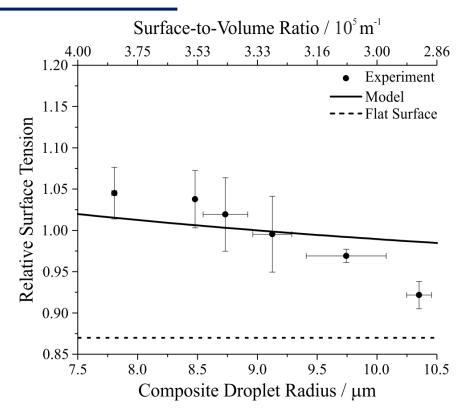
Percent Change in Cloud Droplet Number Concentration

• Potentially large surfactant effects on cloud droplet number concentration (Prisle, GRL, 2012)

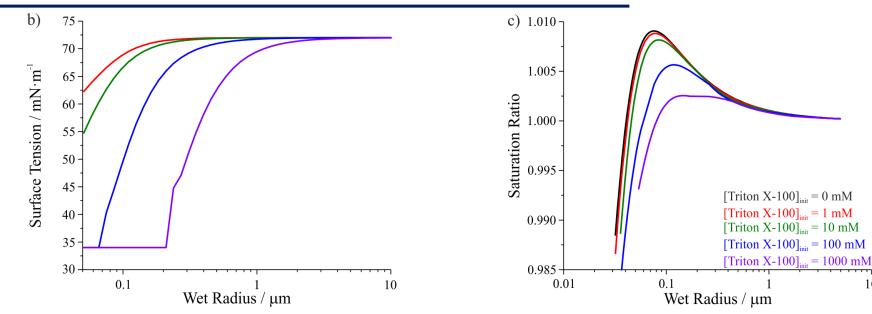
Direct Surface Tension Measurements of Picolitre Droplets


$$\sigma = \frac{\omega_l^2 a^3 \rho}{l(l-1)(l+2)}$$

- $\sigma = \text{surface tension}$ $\omega = \text{oscillation frequency}$ l = oscillation mode a = droplet radius $\rho = \text{droplet density}$
- Study coalescence of two optically trapped droplets (part a)
- Resulting shape oscillations recorded (part b); frequency (ω) extracted
- Droplet's Raman spectrum gives size (*a*) and composition (part c)
- Combined, obtain precise measurements of droplet surface tension (part d; see equation)
- More information: Bzdek et al., Chem. Sci., 2016; Bzdek et al., PNAS, 2020



Droplet Surface Tension Not Equivalent to Bulk Value


- Droplets containing Triton (surfactant) have surface tensions (red symbols) lower than that of water but higher than that of the solutions that produced them (black line)
- Partitioning model calculations (coloured lines) confirm observation is due to droplets' high surface-to-volume ratios

- As surface-to-volume ratio changes, surface tension changes
- See <u>Bzdek et al., PNAS, 2020</u> for more details

Potentially Significant Climate Impacts

- Accurately accounting for surface-bulk partitioning allows predictions of evolving surface tension during hygroscopic growth...
- ...which alters activation parameters (e.g. critical radius, critical supersaturation) as the initial surfactant concentration is varied

Table 1. Parameters for droplets with initial composition (at 0.05-µm radius) indicated in Fig. 5A

Triton V 4001

X-100] _{tot,init} , mivi	<i>κ</i> _c , μm	33 _c , %	γ _c , mi∿m	$\Delta N_{\rm d}/N_{\rm d,est}$	RE_{est} , $VV \cdot M^{-1}$
0	0.076	0.91	67		
1	0.076	0.89	67	0.054	-0.22
10	0.085	0.82	64	0.088	-0.48
100	0.12	0.57	55	0.32	-1.6
1,000	0.15	0.25	34	0.99	-4.9

 $R_{\rm c}$: critical radius, $SS_{\rm c}$: critical supersaturation, $\gamma_{\rm c}$: surface tension at activation, $\Delta N_d/N_{d.est}$: estimated fractional change in N_d , IRE_{est} : estimated IREwhen compared to the reference case.

10

Key Conclusions

- Surfactants can significantly reduce aerosol droplet surface tension below the value for water, but surface tension reduction is size dependent and does not correspond exactly to the macroscopic solution value
- Independent monolayer partitioning model confirms size-dependent surface tension arises from high surface-to-volume ratios in finite-sized droplets
- Predictions of aerosol hygroscopic growth using the model are consistent with a reduction in critical supersaturation for activation, potentially substantially increasing cloud droplet number concentration and modifying radiative cooling relative to current estimates assuming a water surface tension
- Improved constraints on identities, properties, and concentrations of atmospheric aerosol surfactants is required
- Further reading: <u>Bzdek et al., PNAS, 2020; Malila and Prisle, JAMES, 2018</u>
- Funding: NE/P018459/1 (BRB); EP/L010569/1 (BRB, JPR); ERC 717022 (JM, NLP); Acad. Finland 308238 and 314175 (JM, NLP)

