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Motivation

• assess competing effects from mechanical settling and phase change in the snowpack

• improve representation of snow properties

Snow avalanche risk assessment 

Alpine snowpacks Polar snowpacks

Climate models

With such a model we could: 

Well known: The processes mechanical settling and phase change are coupled in snowpacks

‚Tundra sunset‘ by Joseph is licensed under CC BY-SA 2.0‚DSCF7524‘ by Kaleb W is licensed under CC BY- 2.0

Current snowpack models lack a sound mathematical coupling of both processes

https://www.flickr.com/photos/umnak/8454129529/
https://www.flickr.com/photos/umnak/
https://creativecommons.org/licenses/by-sa/2.0/legalcode
https://www.flickr.com/photos/134244566@N03/26137773965/
https://www.flickr.com/photos/134244566@N03/
https://creativecommons.org/licenses/by/2.0/legalcode
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Microscale processes are captured in macroscale properties

Ice Mass Balance – Starting Point for a Flexible Snowpack Model Including Settling

𝝏𝒕𝝓+ 𝝏𝒛 𝝓 ⋅ 𝒗 =
𝟏

𝝆𝒊
𝒄

The ice phase evolves due to 

coupled mechanical and metamorphic phase change processes

• Ice volume fraction 𝝓: ice volume per total 

volume

• Phase change rate 𝒄: loss or gain of ice mass 

in a specific volume per time 

• Settling velocity 𝒗: settlement due to 

mechanical strain per time

Microscale Macroscale
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Ice Mass Balance – Starting Point for a Flexible Snowpack Model Including Settling

The snowpack evolves due to 

coupled mechanical and metamorphic phase change processes

Challenge:

• Flexible solution technique – Solve the ice mass balance for ice volume fraction in a way 

that can be applied to generic settling velocities and phase change processes

• Settling velocity – Parametrize the settling velocity in a physically consistent way

• Metamorphic phase change – Couple settling to complex phase change operators that 

result from established snow and firn models

settling velocity 𝒗 phase change rate 𝒄ice volume fraction 𝝓

𝝏𝒕𝝓+ 𝝏𝒛 𝝓 ⋅ 𝒗 =
𝟏

𝝆𝒊
𝒄
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Flexible Solution Technique – General Idea

The snowpack evolves due to 

coupled mechanical and metamorphic phase change processes

Two-step approach: 

Step 1: Determine phase change rate from a conventional 

process model in a Eulerian reference frame, 

e.g. solution for dry snow in model from Hansen and Foslien (2015) (or 

other process models such as Calonne et al. (2014))

Step 2: Use phase change rate to solve ice mass balance for 

ice volume fraction based on a settling velocity in a 

Lagrangian reference frame,

e.g. a mesh strain based on the method of characteristics

Note: Due to Step 2 the mesh will be distorted,    

hence Step 1 has to be solved on a 

non-uniform grid! 

𝝏𝒕𝝓+ 𝝏𝒛 𝝓 ⋅ 𝒗 =
𝟏

𝝆𝒊
𝒄



Snowpack modeling on moving meshes |  simson@aices.rwth-aachen.de6

Flexible Solution Technique - Mixed Eulerian Lagrangian Solution Method

For 𝑐 = 𝑐𝑜𝑛𝑠𝑡 and 𝑣 = 𝑐𝑜𝑛𝑠𝑡 exists an analytical 

solution

Analytical Numerical

Let 𝜙𝑘
𝑛 ≔ ( 𝑡𝑛, 𝑧𝑘) 𝑡𝑛, 𝑛 𝜖{ 0, … , 𝑁} be a discretization of 

time axis t and 𝑧𝑘 , 𝑘 𝜖{0, … , 𝐾} be a spatial discretization. 

Then 𝜙𝑘
𝑛 ≔ 𝜙(𝑡𝑛, 𝑧𝑘)

𝜙𝑘
𝑛+1 = 𝜙𝑘

𝑛 + Δ𝑡 ⋅
1

𝜌𝑖
𝑐𝑘
𝑛 + 𝜕𝑧𝑣 ⋅ 𝜙𝑘

𝑛

𝑧𝑘
𝑛+1 = 𝑧𝑘

𝑛 + Δ𝑡 ⋅ 𝑣𝑘
𝑛

𝜙 =
1

𝜌𝑖
𝑐 ⋅ 𝑡 + 𝜙0 because 𝜕𝑧𝑣 𝜙, 𝑧, 𝜂 = 0

𝑧 = 𝑣 ⋅ 𝑡 + 𝑧0

Flexibility: arbitrary settling velocity closures  

Ice Mass Balance
Update of ice volume fraction 

with coupled coordinate update

𝜕𝑡𝑧 = 𝑣

𝜕𝑡𝜙 =
1

𝜌𝑖
𝑐 + 𝜕𝑧𝑣 ⋅ 𝜙

𝜕𝑡𝜙 + 𝜕𝑧 𝜙 ⋅ 𝑣 =
1

𝜌𝑖
𝑐 Apply

MOC

Simple constant settling velocity closure only

From the perspective of common snowpack models:

Consider MOC as extension of the „layer boundary motion scheme“ that combines settling with the source term 

Method of Characteristics (MOC) to solve non-linear Advection Equation with Source Term

Legend
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Settling Velocity – Simple Constant Velocity Closure Leads to Non-realistic Results 

𝜕𝑡𝜙 + 𝑣𝜕𝑧 𝜙 = 𝑐

Constant settling velocity yields linear advection equation

Snowpack 

height z [m]

𝜙 [-]
Ground

𝑡0 𝜙0

𝑡𝑛

𝑡0
𝜙0

𝜙𝑛

𝑡𝑛
𝑡0 𝜙0

𝜙𝑛

𝑐 = 0

𝑐 = 𝑐𝑜𝑛𝑠𝑡

Snowpack penetrates ground:

𝑣 = 𝑐𝑜𝑛𝑠𝑡 does not comply 

with reality!

Physical constraints 

have to be incorporated!

Initial ice volume fraction: 𝜙 𝑡0, 𝑧 = 𝜙0

Legend
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Settling Velocity – Physical Constraints for Realistic Settling

Settling process in a snowpack model has to comply with the following physical constraints:

1) Non-penetration of the ground, 

hence the settling velocity has to vanish at height zero

2) Incompressibility of ice,

or rather compressibility is only due to a change in volume fraction, such that 

the snowpack can densify only up to a maximum given value

3) Self-consolidation, 

velocity at location z is dependent on all strain below z, hence the settling 

velocity is given by the integral of the local strain rate 

Reflect physical constraints in settling velocity equations!
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Settling Velocity – Connect Self-consolidation with Local Strain 

Settling velocity is the integral of the local strain rate:

Local Strain [-]

Local height change 

divided by total height

ሶ𝜺(𝒛): Local Strain rate 

[s-1]

ሶ𝜀(𝑧) = 𝜕𝑧𝑣 𝑧

Time rate of

change

𝒗 𝒛 : Local Settling 

Velocity [ms-1]

𝑣 𝑧 = න
0

𝑧

ሶ𝜀( ǁ𝑧) 𝑑 ǁ𝑧

Integrate over 

height z

Observation:

Settling velocity as integrated from 

the local strain rate,

is inherently non-penetrating, 

hence complies with constraint 1)

Strategy:

Test Mixed Eulerian Lagrangian solution 

method for a number of strain rate closures

1) Test concept with several strain rates and 2) use them in equation for settling velocity 
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Settling Velocity – Hierarchy of Test Cases

Strain rates ሶ𝜺 of increasing complexity are integrated to settling veloctities 𝒗

Depth dependent                            Ice volume dependent                              Stress dependent

𝜙0

𝜙

𝑧

ሶ𝜀(𝑧) = 𝐷𝑐(𝑧) ሶ𝜀 𝜙(𝑧) = 𝑫𝒄 ⋅ (𝟏 −
𝝓 𝒛

𝝓𝒎𝒂𝒙 𝒛
) ሶ𝜀 𝜎 𝑧 , 𝜂(𝑇) =

𝟏

𝜼 𝑻
𝝈(𝝓, 𝒛)

𝑣 𝜎 𝜙, 𝑧 , 𝜂(𝑇) = න
0

𝑧

ሶ𝜀 … 𝑑 ǁ𝑧

• Strain rate depends on stress 𝝈
and temperature dependent 

viscosity 𝜼
• Derived from constitutive 

equation for mechanics

• Commonly used in snow models2

𝑣 𝜙 𝑧 = න
0

𝑧

ሶ𝜀 𝜙 ǁ𝑧 𝑑 ǁ𝑧

• Strain rate depends on ice 

volume fraction 𝝓
• 𝐷𝑐 : strain rate coefficient

• Commonly used in firn models1 

𝑣 𝑧 = න
0

𝑧

ሶ𝜀( ǁ𝑧) 𝑑 ǁ𝑧

• Strain rate is depth dependent

• 𝐷𝑐 : strain rate coefficient

• Velocity independent of ice 

volume fraction

• Used for numerical benchmark

Legend

Run simulations with 

strain rate/settling velocity pairs

Initial ice volume fract. 

𝝓𝟎: 2 layer snowpack 

Neglect phase change rate

𝑐 = 0

1 Lundin et al. (2017)
2Vionnet et al. (2012), Lehning et al. (2002)
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Simulation Results – Depth Dependent Settling

Constant strain rate coefficient 𝑫𝒄 = 𝟏𝟎−𝟓𝒔−𝟏 1

We observe that:  

• Snow height: 

decreases continuously

• Settling velocity:

linear and decreases with time

• Layer thickness:

upper layer decreases faster

• Ice volume fraction:

increases to non-physical value 

above 1
✓ Non-penetration

O Incompressibility

✓ Self-consolidation

1 Intermediate value of fast (>𝟏𝟎−4𝒔−𝟏) and slow (<𝟏𝟎−6𝒔−𝟏) strain rates (Johnson (2011))  

-17.3 -8.65 0
[cmd-1]
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Simulation Results – Ice Volume Fraction Dependent Strain Rate

We observe that:  

• Snow height: 

decreases with realistic asymptote

• Settling velocity:

piecewise linear and decreasing

• Layer thickness:

Lower layer decreases faster

• Ice volume fraction:

increases to 𝝓𝒎𝒂𝒙

Maximum ice volume fraction 𝝓𝒎𝒂𝒙 = 1

✓ Non-penetration 

✓ Incompressibility

✓ Self-consolidation
-13 -6.5 0

[cmd-1]
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Simulation Results – Ice Volume Fraction Dependent Strain Rate

Our approach allows a flexible depth dependent definition of 𝝓𝒎𝒂𝒙 𝒛

𝜙𝑚𝑎𝑥 = 0.9 ≫ 𝜙0 𝜙𝑚𝑎𝑥 = 0.35 > 𝜙0 𝜙𝑚𝑎𝑥 = 0.25 < 𝜙0 𝜙𝑚𝑎𝑥 𝑧 = 0.4−0.9
𝐻 ⋅ 𝑧 + 0.9 > 𝜙0

𝜙𝑚𝑎𝑥𝜙0

𝜙

𝑧
𝜙𝑚𝑎𝑥

𝜙0

𝜙

𝑧
𝜙𝑚𝑎𝑥(𝑧)

𝜙0

𝜙

𝑧𝜙𝑚𝑎𝑥

𝜙0

𝜙

𝑧
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Settling Velocity – Stress controlled Strain Rate

Constant snow viscosity 𝜼 = 𝟑𝟓𝟓𝟐𝟏𝟏𝟏𝟔𝟐 𝑷𝒂𝒔1

• Snow height: decreases with 

realistic asymptote

• Settling velocity: non-linear, 

decreases with time

• Layer thickness: lower layer 

decreases faster

• Ice volume fraction: increases 

to maximum value 0.95

We observe that:  

𝜂 → ∞ for 𝜙 > 0.95 to constrain ice volume fraction to values lower than 1 

✓ Non-penetration 

✓ Incompressibility

✓ Self-consolidation

1 According to snow viscosity formulation from Vionnet et al. (2012) for T =263K and 𝜙 = 0.16

-1.30 -0.65 0
[cmd-1]
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Phase Change Term – Determined from a Conventional Process Model

Here, we test the coupling with the model from Hansen and Foslien (2015) 1

Assumptions:

• Phase change covers water vapor and ice, so deposition and sublimation only

Referred to as condensation rate 𝑐 in the following: deposition +𝑐 and sublimation −𝑐

• Water vapor is always at saturation density

• Mechanical settling neglected 

Extend mathematical model for our purposes: Add settling velocity

Mathematical model:

• Conservation equations for temperature, phase change, ice mass and energy 

Results:

• Profiles for temperature and condensation rate

Any type of continuum mechanical process model, 

that allows for non-uniform grids can be coupled to MOC

1 More results of coupled computation can also be read in Simson (2019)
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Phase Change Term – Derive Mathematical Model and Computational Workflow

Adjust mathematical model for coupled phase change and settling

1 − 𝜙 ⋅
𝑑𝜌𝑣

𝑒𝑞

𝑑𝑇

𝜕𝑇

𝜕𝑡
−

𝜕

𝜕𝑧
𝐷𝑒𝑓𝑓

𝑑𝜌𝑣
𝑒𝑞

𝑑𝑇

𝜕𝑇

𝜕𝑧
+ 𝝆𝒗

𝒆𝒒
⋅
𝝏

𝝏𝒛
𝝓 ⋅ 𝒗 = −𝑐

𝜌𝐶 𝑒𝑓𝑓 + 1 − 𝜙
𝑑𝜌𝑣

𝑒𝑞

𝑑𝑇
⋅ 𝐿

𝜕𝑇

𝜕𝑡
−

𝜕

𝜕𝑧
𝑘𝑒𝑓𝑓 + 𝐿 ⋅ 𝐷𝑒𝑓𝑓

𝑑𝜌𝑣
𝑒𝑞
)

𝑑𝑇

𝜕𝑇

𝜕𝑧
= −𝑳 ⋅ 𝝆𝒗

𝒆𝒒 𝝏

𝝏𝒛
𝝓 ⋅ 𝒗

(2) Water vapor mass balance 1

(3) Temperature equation

Computational workflow of the coupled system

Simulation run for the coupled system 

(1) Ice mass balance 𝜕𝜙

𝜕𝑡
+

𝝏

𝝏𝒛
𝝓 ⋅ 𝒗 =

𝑐

𝜌𝑖

1 Derivation in Appendix

Legend

≪ 1

≪ 1

Temperature

Temperature equation (3) 

Condensation rate

Water vapor balance (2)

Settling velocity

Stress-dependent

Ice volume fraction

Ice mass balance (1)

Temperature gradient: 100 K/m Initial condition: 2 Layer
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Simulation Results – Settling Velocity Coupled to Process Model

Stress dependent settling and condensation rate

Open question: 

Can competing effects be determined 

from ice volume fraction?

• Snow height & layer thickness: 

similar to settling only

• Condensation rate:

Deposition in vicinity of layer 

boundary clearly visible

We observe that:  
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Simulation Results – Settling Velocity Coupled to Process Model

Assess competing effects after 5 days

Settling only vs. Coupled system      

Coupling yields increase in 

ice volume fraction

Coupling yields increased deposition 

close to layer boundary

Condensation rate only vs. Coupled system
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Conclusion and Outlook

The introduced model … 

• is flexible: can be used with arbitrary strain rate formulations from snow and firn models

• is modular: competing effects of different processes can easily be tested

• combines advantages of Lagrangian and Eulerian formulations, e.g. preserving layer transitions in the ice 

phase while being coupled to Eulerian formulations of the vapor/water phase

• can be applied to arbitrary, continuous density profiles (does not rely on layers)

Future potential:

• Integrate further processes, e.g. evolution of specific surface area

• Use for model selection, to find dominant processes in common snow regimes
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Legend

𝜌𝑖 – Ice density [
𝑘𝑔

𝑚3]

𝜙 – Ice volume fraction [−]

𝑐 – Phase change rate [
𝑘𝑔

𝑚3⋅𝑠
]

𝜌𝑣
𝑒𝑞

– Wator vapor density at saturation [
𝑘𝑔

𝑚3]

𝐷𝑒𝑓𝑓 – Effective diffusion coefficient [
𝑠

𝑚2]

𝑧 – Depth coordinates [𝑚]
𝐻 – Total height [𝑚]

𝐿 – Latent heat of ice [
𝐽

𝑘𝑔
]

𝑘𝑒𝑓𝑓 – Effective thermal conductivity [
𝑊

𝑚⋅𝐾
]

𝑣 – Settling velocity [
𝑚

𝑠
]

𝜌𝐶 𝑒𝑓𝑓 – Effective heat capacity [
𝐽

𝑚3⋅𝐾
]

ሶ𝜀 – Strain rate [𝑠−1]
𝐷𝑐 – Strain rate coefficient [𝑠−1]
𝜎 – Stress from overburdened mass [𝑃𝑎]
𝜂 – Snow viscosity [𝑃𝑎 ⋅ 𝑠]
𝑡 – Time [𝑠]
𝑇 – Temperature [𝐾]
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Extended Mathematical Model – Water Vapor Mass Balance

Ice mass balance: 𝜌𝑖 . 𝜕𝑡𝜙 + 𝜌𝑖 ⋅ 𝜕𝑧 𝜙 ⋅ 𝑣 = 𝑐

Water vapor mass balance: 1 − 𝜙 ⋅ 𝜕𝑡𝜌𝑣 − 𝜕𝑧 𝐷𝑒𝑓𝑓𝜕𝑧𝜌𝑣 − 𝜌𝑣𝜕𝑡𝜙 = −𝑐

1 − 𝜙 ⋅ 𝜕𝑡𝜌𝑣 − 𝜕𝑧 𝐷𝑒𝑓𝑓𝜕𝑧𝜌𝑣 = −𝑐 +𝜌𝑣𝜕𝑡𝜙 ⋅
𝜌𝑖

𝜌𝑖

Now, add terms on both sides to prepare substitution of second term on RHS

1 − 𝜙 ⋅ 𝜕𝑡𝜌𝑣 − 𝜕𝑧 𝐷𝑒𝑓𝑓𝜕𝑧𝜌𝑣 + 𝝆𝒊 ⋅ 𝝏𝒛 𝝓 ⋅ 𝒗 ⋅
𝝆𝒗

𝝆𝒊
= −𝒄 + 𝜌𝑖𝜕𝑡𝜙 ⋅

𝜌𝑣

𝜌𝑖
+𝝆𝒊 ⋅ 𝝏𝒛 𝝓 ⋅ 𝒗 ⋅

𝝆𝒗

𝝆𝒊

Now, substitute second and third term on RHS with ice mass balance

1 − 𝜙 ⋅ 𝜕𝑡𝜌𝑣 − 𝜕𝑧 𝐷𝑒𝑓𝑓𝜕𝑧𝜌𝑣 + 𝝆𝒗 ⋅ 𝝏𝒛 𝝓 ⋅ 𝒗 = 𝒄 ⋅ (
𝜌𝑣
𝜌𝑖
− 1)

Assume
𝜌𝑣

𝜌𝑖
≈ 0

1 − 𝜙 ⋅ 𝜕𝑡𝜌𝑣 − 𝜕𝑧 𝐷𝑒𝑓𝑓𝜕𝑧𝜌𝑣 + 𝝆𝒗 ⋅ 𝝏𝒛 𝝓 ⋅ 𝒗 = −𝒄

Here 
𝑑𝜌𝑣

𝑒𝑞

𝑑𝑇

𝜕𝑇

𝜕𝑡
is equivalent to 𝜕𝑡𝜌𝑣 and 

𝑑𝜌𝑣
𝑒𝑞

𝑑𝑇

𝜕𝑇

𝜕𝑧
is equivalent to 𝜕z𝜌𝑣

Legend


