Update of lake cover for NWP modelling

Margarita Choulga¹, Souhail Boussetta¹, Ekaterina Kourzeneva², Gianpaolo Balsamo¹

¹ ECMWF, Research Department, Reading, UK

² Finnish Meteorological institute, Helsinki, FI

Corresponding author: margarita.choulga@ecmwf.int

Supported by CO2 Human Emission (CHE) and Copernicus Emergency Management Service – Early Warning Systems – operational computational centre of EFAS (CEMS-Flood) projects. The CHE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776186.

The CEMS-Flood project has received funding from European Commission Copernicus Emergency Management Service (CEMS) Framework Contract No 198702 awarded to ECMWF.

© ECMWF May 1, 2020

Background

• Globally **lakes** occupy about **3.7 % of the land** surface (Borre, 2014; Verpoorter et al., 2014), and are **distributed** very **unevenly**.

• Surface heat, moisture and momentum fluxes depend not only on atmospheric conditions but also on the properties of the land surface, which in lake-rich areas are largely determined by inland water bodies.

• Lakes can **intensify** winter **snowstorms**, **increase precipitation** and surface **temperature**, **generate dangerous weather** phenomena such as night convection and intensive thunderstorms.

Objectives

• Create an **up-to-date water** distribution map suitable for NWP and global related applications **based on high resolution**, **high quality** and **continuously** updated **data**.

• Develop an **automatic method for prompt update** of water distribution map once new input data is available.

Current water distribution map @ ECMWF

• Mainly based on the GlobCover 2009 global map (Bontemps et al, 2011; Arino et al., 2012): nominal resolution of 300 m, Plate-Carree (WGS84 ellipsoid) projection, available from 60° S to 85° N, only one "water" type - does not distinguish between ocean (sea) and inland water bodies (lakes, rivers, etc.).

• **Corrected** over **Iceland** with the Digital map database of Iceland (**IS 50V**): conical Lambert projection (the reference is ISN93 or ISN2004).

• **Corrected** over **Australia**, **Aral Sea**, **Alqueva Reservoir** with Global Surface Water Explorer (**GSWE**) dataset the Water Transitions facet (Pekel et al., 2016): nominal resolution of 30 m, Albers Equal Area (WGS84 ellipsoid) projection.

• Over polar regions (south of 60° S) uses the high-resolution Radarsat Antarctic Mapping Project (RAMP) digital elevation model (DEM) Version 2 (RAMP2) data (Liu et al., 2015) for Antarctica: nominal resolution of 1 km, polar stereographic projection, only values 0= water and 1= land.

• In the Arctic (north of 85° N) no land is assumed.

• **Documentation**: Choulga, M., Kourzeneva, E., Balsamo, G., Boussetta, S., Wedi, N.: Upgraded global mapping information for earth system modelling: an application to surface water depth at the ECMWF, HESS, 23, 10, 4051-4076, doi:10.5194/hess-23-4051-2019, 2019.

New water distribution map @ ECMWF

• Mainly based on the Global Surface Water Explorer (**GSWE**) dataset the **Water Transitions** facet (Pekel et al., 2016): nominal resolution of 30 m, Albers Equal Area (WGS84 ellipsoid) projection – distribution of **permanent water** over 35 year period (1984-2018).

- + High resolution: 30 m horizontal resolution.
- + **High quality**: < 1 % of false water detections, < 5 % of missed water surfaces.
- Areas where water has never been detected and areas of vast open water are masked: missing value over land and over big lakes/ocean.
- Uses additional datasets:
 - ALOS DSM v2.2: elevation datasets mask based on the global digital surface model (DSM) dataset of the World 3D Topographic Data, nominal resolution of 30 m.
 - ÷ **GSWE Metadata v1.1**: information on observations with values over land and no data over open ocean, i.e. number of valid and totally available observations in the study period.
- Generated at Google Earth Engine (earthengine.google.com) webbased powerful code editor for fast, interactive algorithm development with quick access to high resolution data.

New algorithm for water distribution

Main steps of the future fully automated water distribution algorithm:

- 1. from GSWE Water Transitions 30 m resolution map **select** only **permanent water** pixels (each pixel is fully covered with water)
- based on ALOS DSM 30 m resolution map create mask to ease open ocean recognition
- 3. based on GSWE Metadata 30 m resolution map create **mask** to fill **missed inland water** (see Foxe Basin example from the next slide)
- 4. update permanent water 30 m resolution map considering extra masks
- **5. reduce resolution of** the updated permanent **water** map **to 1 km** (significantly reduces output file size, each pixel represent fraction of water)

New algorithm for water distribution: example

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

valid water observations

New water distribution map comparison @ 1 km

Dataset	New water distribution map	ECOCLIMAP-SG	ESA-CCI	ECMWF (Globcover/GSWE)	
Native resolution	30 m	300 m	300 m	1 km (300/30 m)	
Base year	2018	2015	2015	2009 (2016)	
Mean water fraction	0.7696	0.6781	0.6787	0.6666	
Aral Sea 45.645, 59.636	13			65	Water fraction: 0 no water 0.0001 0.13 0.26 0.39 0.52 0.65 0.78 0.9 1 fully covered

Difference in mean water fraction is due to the difference over big water bodies...

New water distribution map comparison @ 1 km

... and due to the difference in number of smaller water bodies

lake diameter 1-2 km

field width 20-30 m

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Conclusions

• A fully automatic method for prompt update of water distribution map is developed.

• Method is **realised on Google Earth Platform** for **fast** computation, **easy access** of high resolution datasets and **easy share** of scripts and results (*enhances collaboration*).

• New water distribution map is generated based on 30 meter resolution data from Global Surface Water Explorer (GSWE).

• **Comparison** shows that new water distribution map has **highest water cover** among ECOCLIMAP, ESA-CCI, ECMWF (mainly Globcover) global ecosystem maps (result consistent with the latest trend of emerging new water bodies due to permafrost thawing).

Future work

- Lake cover map with 30 meter resolution is under final check.
- Monthly water distribution and lake cover maps generation in near future.
- High resolution numerical **experiments with** ECMWF **IFS** model **will be performed** to access impact on the atmospheric forecast.

• **Previous** study **on water** distribution and it's **impact** on the **forecast** are **documented** here: Choulga, M., Kourzeneva, E., Balsamo, G., Boussetta, S., Wedi, N.: Upgraded global mapping information for earth system modelling: an application to surface water depth at the ECMWF, HESS, 23, 10, 4051-4076, doi:10.5194/hess-23-4051-2019, 2019.

Thank you for your attention!

Better life with lakes around!

This **presentation** reflects the **views only of the author**, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Supported by CO2 Human Emission (CHE) and Copernicus Emergency Management Service – Early Warning Systems – operational computational centre of EFAS (CEMS-Flood) projects. The CHE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776186. The CEMS-Flood project has received funding from European Commission Copernicus Emergency Management Service (CEMS) Framework Contract No 198702 awarded to ECMWF.

Photo from https://champagneflight.com

