

High temporal resolution ¹³C tracing to link xylem–phloem pathways of carbon in oak trees

Akira L. Yoshikawa^{1*}, Jasper Bloemen^{1,2}, Johannes Ingrisch¹, Henrik Hartmann³, Michael Bahn¹

1.Institute of Ecology, University of Innsbruck

2. Department of Biology, Centre of Excellence PLECO, University of Antwerp

3. Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry

Tree's C and hydraulic cycle

- Photosynthesis assimilates CO₂ to form sugar.
- Sugar is transported to <u>above-</u> & <u>belowground</u> <u>organs</u> to support C sinks.
- CO₂ is released back to the atmosphere through plant respiration and soil respiration

Fate of respired CO₂

• Living cells of plant (e.g. parenchyma) respire CO₂ which is released to the atmosphere from the bark

 Internal transport of dissolved CO₂ has been often ignored.

Upward and downward transport of C

Rapid report 🔂 Free Access

Root-derived CO_2 efflux via xylem stream rivals soil CO_2 efflux

Doug P. Aubrey, Robert O. Teskey

First published:02 September 2009 | https://doi.org/10.1111/j.1469-8137.2009.02971.x |

- Results in underestimation of belowground respiration
- Potential re-fixation in leaves and green bark
- Unaccounted local source of C

Motivations of the research

Observe upward and downward movement and dynamics of C in trees, connecting above and belowground tissue.

Trace the fate of phloem transported sugar and xylem transported CO₂ in high temporal resolution.

Observe potential mixing of C in xylem and phloem through lateral transport and CO₂ re-fixation.

Methods: Xylem-phloem dual-labeling

- We used two types of pulse labeling to trace C in young oak trees (*Quercus* rubra; n = 3):
 - Canopy ${}^{13}CO_2$ labeling (n = 3) and xylem ${}^{13}CO_2$ infusion labeling (n = 4)
- The goal is to trace detect phloem transported CO₂ and xylem transported CO₂ in respiration and biomass.
- We also aimed to detect connectivity between the two pools of C (transfer between the two)
- Experiment was conducted in Innsbruck University Botanical garden during 2015 and 2016 by Jasper Bloemen

Methods: Canopy ¹³CO₂ labeling

Methods: Xylem ¹³CO₂ infusion labeling

- ¹³CO₂ gas was dissolved in DI water amended with KCI
- Infused water was carried upward on xylem stream.

Xylem infusion

- Label follows a decay due to depletion of label
- Short mean residency time for xylem infused ¹³CO₂ (5 - 16 h)
- Xylem infused ¹³CO₂ remained in CO₂ efflux several days after labeling

Atom fraction after Canopy ¹³CO₂ labeling

Atom fraction after Xylem ¹³CO₂ infusion labeling

Residuals of canopy labeled tree

150

100

 Residual of fitted model shows diurnal pattern of excess ¹³CO₂ efflux, primarily driven by dynamics of respiration.

50

Hours from the midnight of the labeling day

Normalized residuals of excess ¹³CO₂ efflux (fitted to loess function)

0.5

-0.5

1.0

0.5

-0.5

-1.0

0

Residuals of **xylem labeled** tree

 Residual of fitted model shows increased daytime excess ¹³CO₂ efflux from the stem. • Isotopic composition (atom fraction) of stem efflux also show a diurnal pattern.

Residuals of **xylem labeled** tree

Potential mechanisms of diurnal ¹³C dynamics in xylem labeled trees

 Increased degassification of infused CO₂ due to increased temperature or stem CO₂ concentration driven by respiration.

1.0

0.5

0.0 -0.5

30

- Incorporation of infused CO₂ in respiratory substrate.
- Effects from diurnal change in sap flow

60

fraction)

¹³C labels found in biomass after xylem labeling

Xylem infused ¹³CO₂ were found in stem phloem at various height.

Strong ¹³C signal in petiole and veins suggests recycling of xylem transported CO_2 as a source of sugar.

Soluble sugar in Leaves after Xylem labeling

¹³C labels found in biomass after canopy labeling

Lateral transport of C from phloem to xylem was observed after canopy labeling.

Conclusion

- Soluble sugar from phloem were laterally transported to inner xylem within a few days.
- CO₂ transported upward through xylem had relatively short residency time, but was re-assimilated as soluble sugar.
- Pathway of xylem transported CO₂ and phloem transported sugar is linked, connecting two of the C pools within a few days.