

TUDelft University of Technology

Water, Weather and Climate Services for Africa: the case of Ghana and Kenya

Frank Ohene Annor, Nick van de Giesen, and Marie-Claire ten Veldhuis

Department of Water Resources, Delft University of Technology, Delft, Netherlands

info@twiga-h2020.eu

May 2020

Introduction to the TWIGA project

The objective of the project is to provide currently unavailable geo-information on weather, water and climate for sub-Saharan Africa by enhancing satellite-based geo-data with innovative in situ sensors and developing related information services that answer needs of African stakeholders and the **GEOSS** community.

TWIGA

info@twiga-h2020.eu

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission's opinions. The European Union is not liable for any use that may be made of the information.

Sensors in TWIGA Countries

Ghana

Kumasi DTS, UAV, TAHMO, VegMon, Plastic CS

Tamale Disdro, Rainfall CS, DTS, TAHMO, VegMon

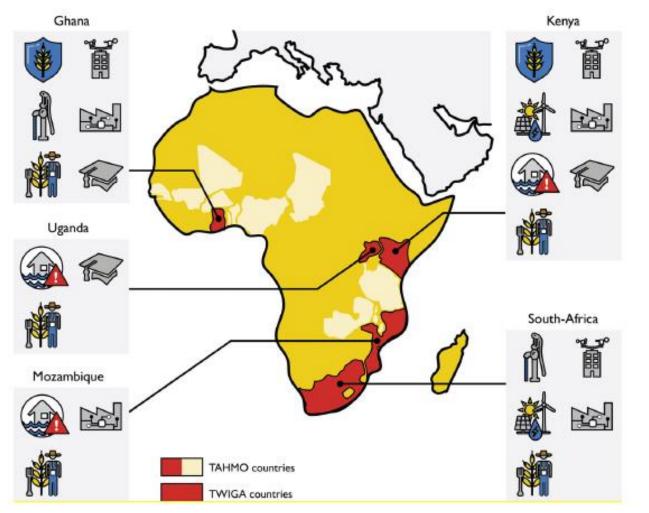
Navrongo VegMon, TAHMO

Uganda Entebbe GNSS, TAHMO

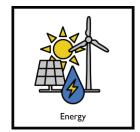
Bugame GNSS, TAHMO

Kenya Narok Disdro, Soil moisture, TAHMO, Evaporometers, VegMon

info@twiga-h2020.eu



This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission's opinions. The European Union is not liable for any use that may be made of the information.


Mapped Services

TWIGA Services in Ghana & Kenya

Implemented Pipeline

SN	Service	Description of Service	TWIGA Innovations/Data requirement	
1	How humid is my environment	Provide estimates of how wet the soil is in five classes: very dry, dry, moist, very moist, and saturated. "Very dry" corresponds with wilting point and "very moist" with field capacity.	Thermal imagery from UAV Sentinel-1, DTS, Evaporometers, Low-cost soil moisture sensors and TAHMO stations	 Meteorological information for livestock – EWS Meteorological information for plagues prediction Vulnerability Indexes for Insurance Wind forecast for wind energy Water quality monitoring tool Water availability Post-disaster vector-borne diseases forecast
2	Crop insurance based on soil index	The crop insurance product uses soil moisture conditions for pay-outs instead of only rainfall (this include yield and germination insurance). The soil moisture is determined using satellites and soil moisture probes and DTS in 2 pilot locations (Districts) - one each in Northern and Southern Ghana.	Farmerline's Mergdata Platform, Sentinel-1 derived soil moisture products, Disdrometers, TAHMO Stations, HydroNet Platform Soil moisture sensors including Teros-12	
3	Short-term prediction for solar energy	By extrapolating cloud movements and daily cloud formation patterns, it is possible to develop a short-term prediction for the amount of solar radiation reaching the surface. This information will be useful for energy managers that include large solar farms. TAHMO data is used to train the model and assess the results.	TAHMO stations, Satellite Data and Models	 12. Seasonal forecast (onset of rain, temp) 13. Forecast for fisheries (heavy rains over lakes/coasta areas) 14. Fog prediction 15. Thresholds for specific extremes 16. Map4ER: Mapping for Emergency Response 17. Flood Impact: Early warning flood forecasting
4	EWS for clogging of drains	Urban drainage networks in Africa tend to clog at bottlenecks with discarded plastic. A camera is used to take regular pictures and transform the image into a simple measure of accumulation. This information will be sent to the web. Warnings can be issued to municipalities and/or plastic collectors.	GNSS network for early warning system, Disdrometers (intervalometers), Flood Mapping App, TAHMO stations	18. Erosion and landslide Risk 19. Basin Water Control Room 20. Energy flux maps 21. Drought monitoring forecasting 22. Drought/Flood vulnerability maps 23. Yield prediction
5	EWS for heavy rains	Mapping open water floods and vegetated flooded areas, combining satellite remote sensing with UAV. Products: River cross-sections and DEM + flood map + training	Sentinel-1 data, UAVs, Soil Moisture Sensors, Flood Mapping App, DEM, HydroNet platform	24. Pre-harvest crop status 25. Post-harvest crop status
6	Crop detection and condition monitoring (crop doctor)	Crop detection, crop stress monitoring	UAVs (NIR, NDVI), VegMon App	info@twiga-h2020.eu © 😈

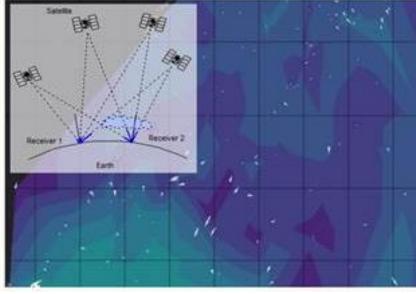
Acceleration of TWIGA Innovations

Innovation	TRL before the Project	Status of Innovation	Current TRL
100 Euro neutron counter	1	Experimental stage at the Lab at the TU Delft and Oregon State University	3
Laser micro scintillometer	2	No TRL acceleration yet	2
Doppler radar rain sensor	3	No TRL acceleration yet	3
Evaporometer	4	Installed in an operational environment in Kenya (Narok test bed)	7
Accelerometer tree weighing	4	No TRL acceleration yet	4
Intervalometer rain gauge	5	System complete and qualified and in continuous monitoring mode at selected sites in Kenya (Narok), and Ghana (Tamale)	8
Lightning tracking	6	These are operational in TAHMO stations (commercially available)	9
GNSS water vapour	6	System complete and qualified and in continuous monitoring mode at selected sites in Uganda	8
Flood mapper	7	Mobile phone app to map extent of flooding - System complete and qualified and in continuous monitoring mode at Aboabo, Kumasi in Ghana	8
Humidity Tracker	1	Operational within Farmerline Mergdata App - System complete and qualified and in continuous monitoring mode in Ghana	8
VegMon	1	Mobile phone app to monitor vegetation parameters - System complete and qualified and in continuous monitoring mode in Ghana (Tamale, Navrongo and Kumasi) and in Kenya (Narok)	8
Crop doctor	7	It is operation in Mozambique and Kenya	8

In situ sensors - Atmospheric moisture Precipitable Water Vapor

Article

Potential of Cost-Efficient Single Frequency GNSS

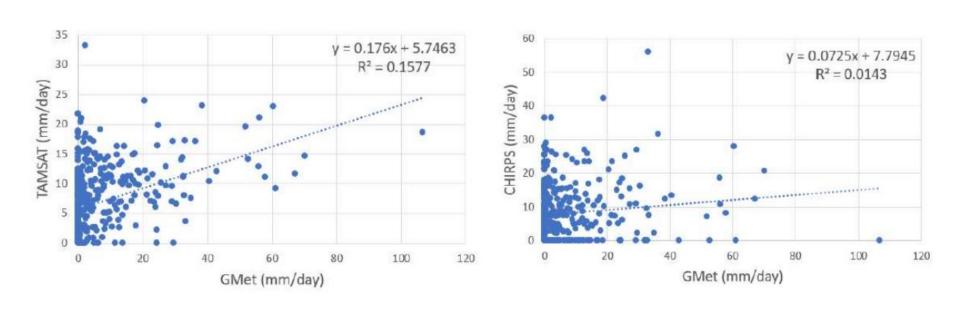

Receivers for Water Vapor Monitoring

Andreas Krietemeyer ^{1,*}, Marie-claire ten Veldhuis ¹, Hans van der Marel ¹ Eugenio Realini ² and Nick van de Giesen ¹

- Faculty of Civil Engineering, TU Delft, 2628 CN Delft, The Netherlands; J.A.E.tenVeldhuis@tudelft.nl (M.-c.t.V.); H.vanderMarel@tudelft.nl (H.v.d.M.); N.C.vandeGiesen@tudelft.nl (N.v.d.G.)
- GReD—Geomatics Research & Development srl, 22074 Lomazzo (CO), Italy; eugenic
- Correspondence: A.Krietemeyer@tudelft.nl

Received: 17 August 2018; Accepted: 13 September 2018; Published: 18 September 2018

GNSS Early results



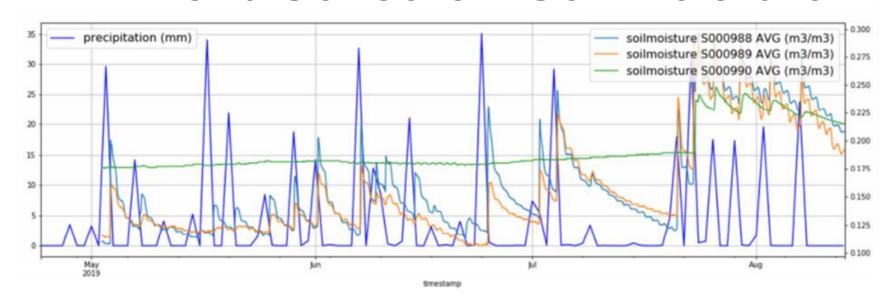
Getting Rainfall Right Services: Agriculture, insurance, flood

Get handle on variability

In situ Sensors - Rainfall variability

Narok - Kenya: Disdros and Intervalometers

In situ Sensors - Rainfall variability


Nyankpala - Ghana: Disdros and Citizens

In situ Sensors - Soil moisture

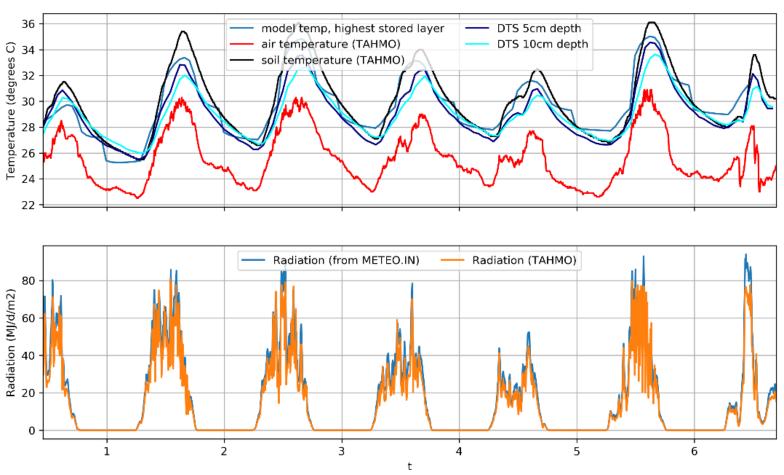
Time series of soil moisture and precipitation at station TA00616 (Tamale). Soil moisture profiles show response rainfall: steep rise followed by a gradual decrease in soil moisture content over a period of up to ~25 days.

Teros-12 Nyankpala (Ghana)

<u>info@twiga-h2020.eu</u>

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission's opinions. The European Union is not liable for any use that may be made of the information.

In situ Sensors - Soil moisture


Distributed Temperature Sensing

In situ Sensors - Soil moisture

Nyankpala – Tamale, Ghana

info@twiga-h2020.eu

TWIGA


Distributed Temperature Sensing

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission's opinions. The European Union is not liable for any use that may be made of the information.

TWIGA Sensors: Soil moisture

SAR Soil Moisture (Sentinel-1)

TWIGA Sensors: Flood

Kumasi (Ghana) water level

TWIGA Sensors: Flood

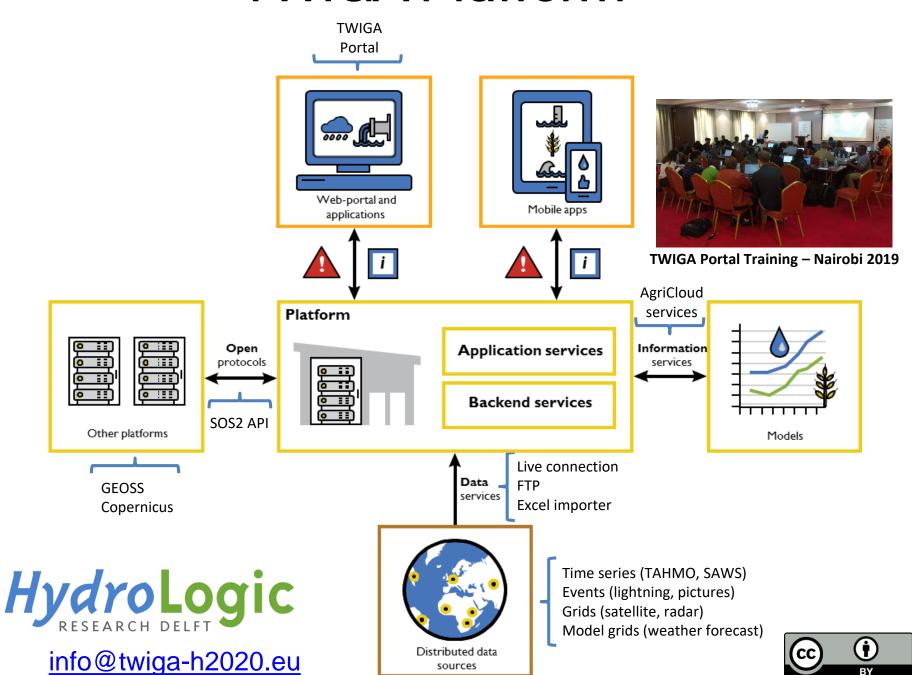
Kumasi (Ghana) - Does it drain?

TWIGA Sensors: Flood

Kumasi (Ghana) Hackathon Plastic Spectrometer


Plastic Mapping App

TWIGA Sensors: Crop monitoring



VegMon ODK App – Jan Friesen

TWIGA Platform

info@twiga-h2020.eu

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission's opinions. The European Union is not liable for any use that may be made of the information.

TWIGA Partners

FarmerLine

FutureWater

GReD

HCP International

HydroLogic

GAIP

Imperial

KMD

Natural Resources

KNUST

Makerere

MicroStep

PolMi

SAWS

Starlab

Strathmore

TAHMO

TU Delft

UFZ

18 **Partners**

10 - Europe 8 - Africa