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Land surface models have become 
more and more complex over time

Fisher & Koven, JAMES, 2020

Each line is a process represented in land surface models
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But spread in terrestrial carbon cycle predictions 
remains and is dominated by model uncertainty

Bonan & Doney, Science, 2018
Lovenduski & Bonan, ERL, 2017

advances are needed, but theremay be a limit to
howmuchmodel uncertainty can be reduced (94).
More complexity does not necessarily lead to bet-
ter predictions or reduce uncertainty.
A second pathway is to better integrate ESMs

and VIA models. The gap between models arises
fromdisciplinary expertise (atmospheric and ocean
sciences for ESMs and hydrology, ecology, biogeo-
chemistry, agronomy, forestry, andmarine sciences
for VIA models), but effective communication
among, rather than across, disciplines is not trivial.
There are also pragmatic considerations, partic-
ularly with regard to spatial scale and process
complexity, that limit collaboration between global
ESMs and VIA models with a more local to re-
gional domain. However, just as the science of
Earth systemprediction is seen as ameans to unite
the weather and climatemodeling communities
(80,81), so, too, can the broadening ofEarth system
prediction to include the biosphere stimulate col-
laborations with the VIA community.
A third promising researchpathway is to expand

the concepts andmethodology of seasonal to dec-
adal climate prediction to include terrestrial and
marine ecosystems and to quantify prediction un-
certainty at spatial and temporal scales relevant
to stakeholders. The predictability of the terres-
trial carbon cycle can be considered from an eco-
logical perspective (97), but only recently has it
been considered in an Earth system perspective
of natural climate variability, the forced climate
response, and model uncertainty (92, 94). Anal-
ysis of natural variability, model uncertainty, and
scenario uncertainty is similarly informingmarine
biogeochemistry (87–90, 93). Whether the bio-
sphere is a source of climate predictability is not
necessarily the right question to pose. A more
fruitful research pathway may be to investigate
how to predict the biosphere and its resources
in a changing environment, as identified specif-
ically for marine living resources (96) and con-
sidered also for atmospheric CO2 (98). Initial
condition uncertainty and the difficulty in separat-
ing natural variability from the forced trend likely
produces irreducible uncertainty in climate pre-
diction (99). At the regional or biome scale, nat-
ural variability is large for the ocean and land

carbon cycles (89, 92, 93). Whether a similar ir-
reducible uncertainty manifests in terrestrial and
marine ecosystems remains to be explored.
With their terrestrial and marine ecosystems,

biogeochemical cycles, and simulation of plants,
microbes, and marine life, ESMs challenge ter-
restrial and marine ecologists and biogeochem-
ists to think in terms of broad generalizations
and to find the mathematical equations to de-
scribe the biosphere, its functioning, and its re-
sponse to global change. ESMs similarly challenge
geoscientists to think beyond a physical under-
standing of climate to include biology. Themodels
showmuch promise to advance our understand-
ing of global change but must move from the
synthetic world of an ESM toward the realworld.
Bridging the gap between observations and theory
as atmospheric CO2 rises, climate changes,more
nitrogen is added to the system, forests are cleared,
grasslands are plowed or converted to pastures,
coastal wetlands and coral reefs are degraded or
lost, andoceanswarmandare increasinglypolluted
poses challenging opportunities for the next gener-
ation of scientists to advance planetary ecology and
climate science.
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Fig. 4. Ocean and land carbon cycle
uncertainty. The percentage of total variance
attributed to internal variability, model
uncertainty, and scenario uncertainty in
projections of cumulative global carbon uptake
from 2006 to 2100 differs widely between
(A) ocean and (B) land. The ocean carbon cycle
is dominated by scenario uncertainty by the
middle of the century, but uncertainty in
the land carbon cycle is mostly from
model structure. Data are from 12 ESMs
using four different scenarios (94).
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advances are needed, but theremay be a limit to
howmuchmodel uncertainty can be reduced (94).
More complexity does not necessarily lead to bet-
ter predictions or reduce uncertainty.
A second pathway is to better integrate ESMs

and VIA models. The gap between models arises
fromdisciplinary expertise (atmospheric and ocean
sciences for ESMs and hydrology, ecology, biogeo-
chemistry, agronomy, forestry, andmarine sciences
for VIA models), but effective communication
among, rather than across, disciplines is not trivial.
There are also pragmatic considerations, partic-
ularly with regard to spatial scale and process
complexity, that limit collaboration between global
ESMs and VIA models with a more local to re-
gional domain. However, just as the science of
Earth systemprediction is seen as ameans to unite
the weather and climatemodeling communities
(80,81), so, too, can the broadening ofEarth system
prediction to include the biosphere stimulate col-
laborations with the VIA community.
A third promising researchpathway is to expand
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adal climate prediction to include terrestrial and
marine ecosystems and to quantify prediction un-
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to stakeholders. The predictability of the terres-
trial carbon cycle can be considered from an eco-
logical perspective (97), but only recently has it
been considered in an Earth system perspective
of natural climate variability, the forced climate
response, and model uncertainty (92, 94). Anal-
ysis of natural variability, model uncertainty, and
scenario uncertainty is similarly informingmarine
biogeochemistry (87–90, 93). Whether the bio-
sphere is a source of climate predictability is not
necessarily the right question to pose. A more
fruitful research pathway may be to investigate
how to predict the biosphere and its resources
in a changing environment, as identified specif-
ically for marine living resources (96) and con-
sidered also for atmospheric CO2 (98). Initial
condition uncertainty and the difficulty in separat-
ing natural variability from the forced trend likely
produces irreducible uncertainty in climate pre-
diction (99). At the regional or biome scale, nat-
ural variability is large for the ocean and land

carbon cycles (89, 92, 93). Whether a similar ir-
reducible uncertainty manifests in terrestrial and
marine ecosystems remains to be explored.
With their terrestrial and marine ecosystems,

biogeochemical cycles, and simulation of plants,
microbes, and marine life, ESMs challenge ter-
restrial and marine ecologists and biogeochem-
ists to think in terms of broad generalizations
and to find the mathematical equations to de-
scribe the biosphere, its functioning, and its re-
sponse to global change. ESMs similarly challenge
geoscientists to think beyond a physical under-
standing of climate to include biology. Themodels
showmuch promise to advance our understand-
ing of global change but must move from the
synthetic world of an ESM toward the realworld.
Bridging the gap between observations and theory
as atmospheric CO2 rises, climate changes,more
nitrogen is added to the system, forests are cleared,
grasslands are plowed or converted to pastures,
coastal wetlands and coral reefs are degraded or
lost, andoceanswarmandare increasinglypolluted
poses challenging opportunities for the next gener-
ation of scientists to advance planetary ecology and
climate science.
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Fig. 4. Ocean and land carbon cycle
uncertainty. The percentage of total variance
attributed to internal variability, model
uncertainty, and scenario uncertainty in
projections of cumulative global carbon uptake
from 2006 to 2100 differs widely between
(A) ocean and (B) land. The ocean carbon cycle
is dominated by scenario uncertainty by the
middle of the century, but uncertainty in
the land carbon cycle is mostly from
model structure. Data are from 12 ESMs
using four different scenarios (94).
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projection uncertainty to model structure. Both
unweighted and weighted uncertainty estimates of
terrestrial carbon uptake are presented.

We develop 7 weighting schemes that weight the
models by their ability to simulate observed changes in
terrestrial carbon uptake over 1959–2005. Models that
successfully reproduce past changes are given higher
weights in all schemes. Schemes are based on the
probability density of normally-distributed, linear
trends in cumulative carbon uptake over 1959–2005,

f ðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p e$
ðx$mÞ2

2s2 ; ð7Þ

where m and s represent the mean and standard
deviation, respectively, of the modeled trends in
cumulative terrestrial carbon uptake over 1959–2005.
Each weighting scheme (WS) uses different values of m
and s, derived from trends from a subset of models in
thecorrespondingmodel tier(s) (table S1). Forexample,
WS 1 uses m and s values derived from Tier 1 models,
WS 2 uses m and s values derived from Tier 1 and 2
models, and so on. WS 7 uses m and s values
derived from all of the models (Tiers 1 through 7).
Models were categorized into tiers according to the
absolute value of the difference between the modeled
trend and the observationally-based trend over this
period (table S1).

Each model is given a weight, wm, according to the
resulting probability density ( f (x)) of the modeled
trends in cumulative land uptake for a given weighting

scheme. These weights are expressed as normalized
weights, Wm, in our analysis of variance,

Wm ¼ wmP
m wm

: ð8Þ

3. Results and discussion

The time series of globally-integrated, cumulative
ocean carbon uptake from 2006 to 2100 reveals a
growing ocean carbon sink for all CMIP5 ensemble
members, with higher uptake corresponding to higher
CO2 concentration pathways (figure 1(a)), consistent
with previous studies (Jones et al 2013). The
uncertainty in these projections grows exponentially
from 0 Pg C in 2006 to 94 Pg C in 2100 (figure 1(c)),
reflecting greater divergence in the projections at long
prediction lead times. The analysis of variance reveals
that emission scenario is the dominant source of
uncertainty in the latter half of the century, with model
structure playing an important role in the early part of
the century (figure 1(e)), when overall uncertainty is
low. These findings are similar to those from previous
studies that report on annual-mean (Lovenduski et al
2016) and decadal-mean (Hewitt et al 2016) air-sea
CO2 flux projections. We note, however, that the roles
of internal variability andmodel structural uncertainty
in ocean carbon uptake highlighted in previous studies
(Lovenduski et al 2016, McKinley et al 2016,
Resplandy et al 2015) are small in our analysis, owing
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Figure 1. Projections of cumulative, globally integrated carbon uptake by the ocean and land from 2006 to 2100, and the associated
uncertainty and sources of uncertainty in the projections.
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Model uncertainty comprises both model structure and model parametrization.
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It is not clear if increased carbon cycle model 
complexity implies increased predictive skill

Excessive complexity 
can lead to overfitting

Adapted from Lever et al., Nature Methods, 20164
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THIS MONTH

POINTS OF SIGNIFICANCE

Model selection and 
overfitting
With four parameters I can fit an elephant and with 
five I can make him wiggle his trunk. 
 —John von Neumann
In recent months we discussed how to build a predictive regression 
model1–3 and how to evaluate it with new data4. This month we 
focus on overfitting, a common pitfall in this process whereby the 
model not only fits the underlying relationship between variables in 
the system (which we will call the underlying model) but also fits the 
noise unique to each observed sample, which may arise for biologi-
cal or technical reasons.

Model fit can be assessed using the difference between the model’s 
predictions and new data (prediction error—our focus this month) 
or between the estimated and true parameter values (estimation 
error). Both errors are influenced by bias, the error introduced by 
using a predictive model that is incapable of capturing the underly-
ing model, and by variance, the error due to sensitivity to noise in 
the data. In turn, both bias and variance are affected by model com-
plexity (Fig. 1a), which itself is a function of model type, number 
of inputs and number of parameters. A model that is too simple to 
capture the underlying model is likely to have high bias and low 
variance (underfitting). Overly complex models typically have low 
bias and high variance (overfitting).

Under- and overfitting are common problems in both regression 
and classification. For example, a straight line underfits a third-order 
polynomial underlying a model with normally distributed noise 
(Fig. 1b). In contrast, a fifth-order polynomial overfits it—model 
parameters are now heavily affected by the noise. As we would 
expect, fitting a third-order polynomial gives the best results, though 
if the high noise level obscured the actual trend and our goal was 
to reduce total error, we might choose a less complex model than 
the underlying model (for example, second-order). The situation is 
similar for classification—for example, a complex decision bound-
ary may perfectly separate classes in the training set, but because 
it is greatly influenced by noise, it will frequently misclassify new 
cases (Fig. 1c). In both regression and classification problems, 
the overfitted model may perform perfectly on training data but 
is likely to perform very poorly, and counter to expectation, with 
new data.

To illustrate how to choose a model and avoid under- and overfit-
ting, let us return to last month’s diagnostic test to predict a patient’s 
disease status4. We will simulate a cohort of 1,000 patients, each 
with a profile of 100 blood biomarkers and known disease status, 
with 50% prevalence. Our aim will be to use the cohort data to 
identify the best model with low predictive error and understand 
how well it might perform for new patients. We will use multiple 
logistic regression to fit the biomarker values—the selection of bio-
markers to use will be a key consideration—and create a classifier 
that predicts disease status. For simplicity, we will restrict ourselves 
to using the F1 score as the metric; practically, additional metrics 
should be used to broadly measure performance4.

We might use the data for an entire cohort to fit a model that 
uses all the biomarkers. When we returned to the cohort data to 
evaluate the predictions, we would find that they were excellent, 
with only a small number of false positives and false negatives. The 
model performed well, but only on the same data used to build 
it; because it may fit noise as well as systematic effects, this might 
not be reflective of the model’s performance with new patients. 
To evaluate the model more honestly, we could recruit additional 
patients, but this would be both time-consuming and expensive. 
Alternatively, we could split the cohort data into groups: a training 
set to fit the model, and a testing set (or hold-out set) to estimate 
its performance. If we applied the common 80/20 split for training 
and test set, we would randomly select 800 patients for the multiple 
logistic regression fit and use the remaining 200 for evaluation, with 
the constraint that both subsets have the same fraction of diseased 
patients (class balance).

But should we use all the biomarkers for our model? Practically, 
it is likely that many are unrelated to disease status; therefore, by 
including them all we would be modeling quantities that are not 
associated with the disease, and our classifier would suffer from 
overfitting. Instead, we could construct and evaluate 100 different 
models, each using 1–100 of the most important biomarkers; we 
assume that we can estimate this ordering. But even if we do this, 
we might merely identify the model that best fits the testing set, and 
thus overestimate any performance metrics on new data.

To gain a more honest assessment of performance, we introduce 
the validation set. This set is used to evaluate the performance of 
a model with parameters that were derived from the training set. 
Only the model with the best performance on the validation set 
is evaluated using the test set. Importantly, testing is done only 
once. If the data set is large, the training, validation and test sets 
can be created with a typical 60/20/20 split, maintaining class 
balance. When using a small data set, as is common in biologi-
cal experiments, we can use cross-validation as explained below. 
In our cohort example, we would train on 600 randomly selected 
patients, evaluate them using a different set of 200 patients and test 
only the best model on the remaining 200 patients. After the best 
model is selected, the final stage of creating a classifier involves 

Figure 1 | Overfitting is a challenge for regression and classification 
problems. (a) When model complexity increases, generally bias decreases 
and variance increases. The choice of model complexity is informed by the 
goal of minimizing the total error (dotted vertical line). (b) Polynomial 
fits to data simulated from a third-order polynomial underlying a model 
with normally distributed noise. The fits shown exemplify underfitting 
(gray diagonal line, linear fit), reasonable fitting (black curve, third-order 
polynomial) and overfitting (dashed curve, fifth-order polynomial). There is 
a large difference (red dotted line) in Y prediction at X = 0.9 (orange circle) 
between the reasonable and overfitted models. (c) Two-class classification 
(open and solid circles) with underfitted (gray diagonal line), reasonable 
(black curve) and overfitted (dashed curve) decision boundaries. The overfit 
is influenced by an outlier (arrow) and would classify the new point (orange 
circle) as solid, which would probably be an error.

ba c

0
0

1

0

1

1 0 1

Y

Er
ro

r

X X

Y

Model complexity

Bias

Variance

Total

Fo
re

ca
st

 e
rro

r

NATURE METHODS | VOL.13 NO.9 | SEPTEMBER 2016 | 703

THIS MONTH

POINTS OF SIGNIFICANCE

Model selection and 
overfitting
With four parameters I can fit an elephant and with 
five I can make him wiggle his trunk. 
 —John von Neumann
In recent months we discussed how to build a predictive regression 
model1–3 and how to evaluate it with new data4. This month we 
focus on overfitting, a common pitfall in this process whereby the 
model not only fits the underlying relationship between variables in 
the system (which we will call the underlying model) but also fits the 
noise unique to each observed sample, which may arise for biologi-
cal or technical reasons.

Model fit can be assessed using the difference between the model’s 
predictions and new data (prediction error—our focus this month) 
or between the estimated and true parameter values (estimation 
error). Both errors are influenced by bias, the error introduced by 
using a predictive model that is incapable of capturing the underly-
ing model, and by variance, the error due to sensitivity to noise in 
the data. In turn, both bias and variance are affected by model com-
plexity (Fig. 1a), which itself is a function of model type, number 
of inputs and number of parameters. A model that is too simple to 
capture the underlying model is likely to have high bias and low 
variance (underfitting). Overly complex models typically have low 
bias and high variance (overfitting).

Under- and overfitting are common problems in both regression 
and classification. For example, a straight line underfits a third-order 
polynomial underlying a model with normally distributed noise 
(Fig. 1b). In contrast, a fifth-order polynomial overfits it—model 
parameters are now heavily affected by the noise. As we would 
expect, fitting a third-order polynomial gives the best results, though 
if the high noise level obscured the actual trend and our goal was 
to reduce total error, we might choose a less complex model than 
the underlying model (for example, second-order). The situation is 
similar for classification—for example, a complex decision bound-
ary may perfectly separate classes in the training set, but because 
it is greatly influenced by noise, it will frequently misclassify new 
cases (Fig. 1c). In both regression and classification problems, 
the overfitted model may perform perfectly on training data but 
is likely to perform very poorly, and counter to expectation, with 
new data.

To illustrate how to choose a model and avoid under- and overfit-
ting, let us return to last month’s diagnostic test to predict a patient’s 
disease status4. We will simulate a cohort of 1,000 patients, each 
with a profile of 100 blood biomarkers and known disease status, 
with 50% prevalence. Our aim will be to use the cohort data to 
identify the best model with low predictive error and understand 
how well it might perform for new patients. We will use multiple 
logistic regression to fit the biomarker values—the selection of bio-
markers to use will be a key consideration—and create a classifier 
that predicts disease status. For simplicity, we will restrict ourselves 
to using the F1 score as the metric; practically, additional metrics 
should be used to broadly measure performance4.

We might use the data for an entire cohort to fit a model that 
uses all the biomarkers. When we returned to the cohort data to 
evaluate the predictions, we would find that they were excellent, 
with only a small number of false positives and false negatives. The 
model performed well, but only on the same data used to build 
it; because it may fit noise as well as systematic effects, this might 
not be reflective of the model’s performance with new patients. 
To evaluate the model more honestly, we could recruit additional 
patients, but this would be both time-consuming and expensive. 
Alternatively, we could split the cohort data into groups: a training 
set to fit the model, and a testing set (or hold-out set) to estimate 
its performance. If we applied the common 80/20 split for training 
and test set, we would randomly select 800 patients for the multiple 
logistic regression fit and use the remaining 200 for evaluation, with 
the constraint that both subsets have the same fraction of diseased 
patients (class balance).

But should we use all the biomarkers for our model? Practically, 
it is likely that many are unrelated to disease status; therefore, by 
including them all we would be modeling quantities that are not 
associated with the disease, and our classifier would suffer from 
overfitting. Instead, we could construct and evaluate 100 different 
models, each using 1–100 of the most important biomarkers; we 
assume that we can estimate this ordering. But even if we do this, 
we might merely identify the model that best fits the testing set, and 
thus overestimate any performance metrics on new data.

To gain a more honest assessment of performance, we introduce 
the validation set. This set is used to evaluate the performance of 
a model with parameters that were derived from the training set. 
Only the model with the best performance on the validation set 
is evaluated using the test set. Importantly, testing is done only 
once. If the data set is large, the training, validation and test sets 
can be created with a typical 60/20/20 split, maintaining class 
balance. When using a small data set, as is common in biologi-
cal experiments, we can use cross-validation as explained below. 
In our cohort example, we would train on 600 randomly selected 
patients, evaluate them using a different set of 200 patients and test 
only the best model on the remaining 200 patients. After the best 
model is selected, the final stage of creating a classifier involves 

Figure 1 | Overfitting is a challenge for regression and classification 
problems. (a) When model complexity increases, generally bias decreases 
and variance increases. The choice of model complexity is informed by the 
goal of minimizing the total error (dotted vertical line). (b) Polynomial 
fits to data simulated from a third-order polynomial underlying a model 
with normally distributed noise. The fits shown exemplify underfitting 
(gray diagonal line, linear fit), reasonable fitting (black curve, third-order 
polynomial) and overfitting (dashed curve, fifth-order polynomial). There is 
a large difference (red dotted line) in Y prediction at X = 0.9 (orange circle) 
between the reasonable and overfitted models. (c) Two-class classification 
(open and solid circles) with underfitted (gray diagonal line), reasonable 
(black curve) and overfitted (dashed curve) decision boundaries. The overfit 
is influenced by an outlier (arrow) and would classify the new point (orange 
circle) as solid, which would probably be an error.
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How is carbon cycle model complexity
related to forecast skill?

We seek to understand:

We used the CARbon DAta MOdel fraMework
(CARDAMOM), a Bayesian data assimilation system 
that allows for flexibility in defining the underlying 
model structure (variants of the DALEC model; see 
right), to explore the relationship between model 
complexity and predictive skill. 

Bloom & Williams, Biogeosciences, 2015
Bloom et al., PNAS, 2016

Research question
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We tested 4032 combinations of 
14 models, 6 sites, and 48 data scenarios. 

Approach

We compared the skill of 14 
different CARDAMOM/DALEC 
model versions of varying 
complexity at forecasting net 
ecosystem exchange (NEE). 
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14 models, 6 sites, and 48 data scenarios. 

Approach
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model versions of varying 
complexity at forecasting net 
ecosystem exchange (NEE). 

We ran the suite of models at 6 globally 
distributed FLUXNET sites across biomes, 
each with at least 10 years of data.
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We tested 4032 combinations of 
14 models, 6 sites, and 48 data scenarios. 

Approach

We compared the skill of 14 
different CARDAMOM/DALEC 
model versions of varying 
complexity at forecasting net 
ecosystem exchange (NEE). 

We ran the suite of models at 6 globally 
distributed FLUXNET sites across biomes, 
each with at least 10 years of data.

During calibration, we assimilated different combinations of NEE
(eddy covariance), leaf area index (LAI) (Copernicus), and biomass (in 

situ surveys), along with additional functional constraints. We also 
tested different magnitudes of observational uncertainty.
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How was forecast skill determined?

We computed the histogram overlap between CARDAMOM ensembles and a Gaussian 
distribution centered at each observation in the forecast window. Unlike an R2 or RMSE, this 
metric explicitly accounts for uncertainty in observations.
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Calibration window
(observations ingested, parameters optimized)

Forecast window
(performance tested against held-out 

observations)
1. Each CARDAMOM run 

outputs an ensemble of 
net ecosystem exchange 
predictions based on 
posterior parameter 
distributions.

2. We computed the histogram 
overlap between the CARDAMOM 
ensemble and the observation 
with uncertainty at each timestep.

3. The forecast skill is the 
average of the overlaps at 
every timestep in the 
forecast window.

Approach
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How was model complexity determined?
Model structure and assimilated data (not just number of model parameters) impact effective 
model complexity.

Thus, to quantify the complexity of a model-site-experiment combination (run), we performed a 
principal component analysis (PCA) on the parameter space.  

Approach

23-parameter model

y = 0.95

Number of principal components

Example: This run (using a 23-
parameter model) has an 
inherent dimensionality of 18.
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x = 18

We defined the “inherent 
dimensionality” of a given run by the 
number of principal components at 
which 95% variance in the parameter 
set is explained.



Better skill
(greater overlap 

between predictions 
and observations)

More complex
(higher inherent 
dimensionality)

Single model run

Median of runs in 
dimensionality bin

Across all site-run combinations, an intermediate-complexity 
model had the highest forecast skill

Results

Predicting NEE
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More complex
(higher inherent 
dimensionality)

Single model run

Median of runs in 
dimensionality bin

Our models fall into 
two populations.

Each population has 
an intermediate-

complexity optimum.

Across all site-run combinations, an intermediate-complexity 
model had the highest forecast skill

Results

Predicting NEE
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However, overall, optimal complexity is a function of which type of data 
are assimilated (different subplots below)

Only NEE assimilated NEE, LAI assimilated NEE, LAI, biomass
assimilated

Only LAI assimilated LAI, biomass
assimilated

B
et

te
r 

sk
ill

 

More complex

No observations 
assimilated

Results

Predicting NEE

B
et

te
r 

sk
ill

 

More complex More complex 13



However, overall, optimal complexity is a function of which type of data 
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When NEE is assimilated 
(and NEE is predicted), higher 
complexity yields higher skill.
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However, overall, optimal complexity is a function of which type of data 
are assimilated (different subplots below)
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When no observations 
are assimilated, simpler 
models perform better.
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These results remain robust when predicting LAI instead of NEE

Results
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When NEE is assimilated 
(and LAI is predicted), higher 
complexity yields higher skill.

17



- Model complexity matters for understanding forecast skill.

- When there is not enough information (e.g., data volume and quality) to adequately 
constrain parameters, increased complexity can degrade skill. (slide 15)

- However, under specific conditions (e.g., when NEE is assimilated), increased complexity 
can yield increased forecast skill. (slide 14)

- This highlights the importance of robust model parametrization for land surface 
modeling.

- We will evaluate the relationship between uncertainty metrics (histogram overlap), 
precision metrics (R2, RMSE), and model complexity.

- We will compare the skill of machine learning models (highly complex) to our suite of 
process-based carbon cycle models.

Summary and implications

Future work
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