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Land surface models have become
more and more complex over time
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But spread in terrestrial carbon cycle predictions
remains and is dominated by model uncertainty

Model uncertainty comprises both model structure and model parametrization.
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It Is not clear If increased carbon cycle model
complexity implies increased predictive skill

Theoretically, a model that balances
the tradeoffs of under- and over-
fitting can minimize forecast error

Excessive complexity
can lead to overfitting
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Adapted from Lever et al., Nature Methods, 2016




Research question

We seek to understand:

How is carbon cycle model complexity
related to forecast skill?

We used the CARbon DAta MOdel fraMework
(CARDAMOM), a Bayesian data assimilation system
that allows for flexibility in defining the underlying
model structure (variants of the DALEC model; see
right), to explore the relationship between model
complexity and predictive skill.
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Approach

We tested 4032 combinations of
14 models, 6 sites, and 48 data scenarios.

We compared the skill of 14
different CARDAMOM/DALEC
model versions of varying
complexity at forecasting net
ecosystem exchange (NEE).
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Approach

We tested 4032 combinations of
14 models, 6 sites, and 48 data scenarios.

We compared the skill of 14
different CARDAMOM/DALEC
model versions of varying
complexity at forecasting net
ecosystem exchange (NEE).

During calibration, we assimilated different combinations of NEE
(eddy covariance), leaf area index (LAIl) (Copernicus), and biomass (in
situ surveys), along with additional functional constraints. We also
tested different magnitudes of observational uncertainty.
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How was forecast skill determined?

Approach

We computed the histogram overlap between CARDAMOM ensembles and a Gaussian
distribution centered at each observation in the forecast window. Unlike an R2 or RMSE, this

metric explicitly accounts for uncertainty in observations.
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We computed the hlstogram

overlap between the CARDAMOM %
ensemble and the observation II II ”2
with uncertainty at each timestep. ---ll o

CARDAMOM ensemble

Each CARDAMOM run
outputs an ensemble of
net ecosystem exchange
predictions based on
posterior parameter
distributions.

The forecast skill is the
average of the overlaps at
every timestep in the
forecast window.




Approach

How was model complexity determined?

Model structure and assimilated data (not just number of model parameters) impact effective
model complexity.

Thus, to quantify the complexity of a model-site-experiment combination (run), we performed a
principal component analysis (PCA) on the parameter space.

We defined the “inherent 23-parameter model
dimensionality” of a given run by the
number of principal components at 50971 y=095
which 959% variance in the parameter Lc
set is explained. g Example: This run (using a 23-

parameter model) has an
inherent dimensionality of 18.

x=18 \\/
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Across all site-run combinations, an intermediate-complexity
model had the highest forecast skill
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However, overall, optimal complexity is a function of which type of data
are assimilated (different subplots below)
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However, overall, optimal complexity is a function of which type of data
are assimilated (different subplots below)
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However, overall, optimal complexity is a function of which type of data
are assimilated (different subplots below)

Predicting NEE

E
n
S
()
fhr]
-
Q
m

.,| No observationg

N assimilated
When no observations

are assimilated, simpler

models perform better.

Better skill

More complex More complex More complex




These results remain robust when predicting LAl instead of NEE
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These results remain robust when predicting LAl instead of NEE
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Summary and implications

Model complexity matters for understanding forecast skill.

When there is not enough information (e.g., data volume and quality) to adequately
constrain parameters, increased complexity can degrade skill. (s/ide 15)

However, under specific conditions (e.g., when NEE is assimilated), increased complexity
can yield increased forecast skKill. (slide 14)

This highlights the importance of robust model parametrization for land surface
modeling.

Future work

We will evaluate the relationship between uncertainty metrics (histogram overlap),
precision metrics (R2, RMSE), and model complexity.

We will compare the skill of machine learning models (highly complex) to our suite of
process-based carbon cycle models.




