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TERRESTRIAL BIOSPHERE MODELS TODAY

Some data of the latent heat flux,
Howard Springs, Australia

Some models seem pretty good!
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What'’s going on... ?

Models use Plant Functional Types and
prescribe constant rooting depths ...
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freely draining conditions...
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Net Carbon Profit :

Total difference of carbon uptake by
photosynthesis and carbon costs of the
system

Evaporation \ /Assimilation Vegetation Optimality Model
/ Optimizes vegetation properties to
maximize NCP

S]S02 UogIe)

Root uptake

No calibration on hist
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HYPOTHESES

Conventional models capture the temporal and spatial variation of
carbon and water fluxes better compared to the optimality-driven

model. Go to results >

Optimality-based dynamics of vegetation cover will lead to worse
reproduction of fluxes compared to using mean monthly vegetation
cover values for each site obtained from remote sensing time series.

Go to results >

Optimality-based rooting depths will not result in better reproduction of
carbon and water fluxes compared to a prescribed, homogeneous
rooting depth.

Go to results =

Re-calibration of the costs for the water transport system, i.e. costs for
the vascular system in roots, stems and branches, at each site will not

result in a large variation of the cost parameter for these costs.
Go to results =
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NORTH AUSTRALIAN TROPICAL TRANSECT
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* Mean annual rainfall; 500-1800 mm
* Pronounced wet season: Nov-Feb
* Evergreen trees + seasonal grass

- Flux towers for evaporation and CO -fluxes
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VEGETATION OPTIMALITY MODEL

Tree cover
—

Grass cov.

-
Grass rooting
depth

Tree rooting depth

Root distributions

Optimized constants Dynamically optimized variables:
Tree cover fraction Grass cover fraction

Tree rooting depth Photosynthetic capacity
-“ * Grass rooting depth Stomatal conductances
Water use strategies Fine root surface area
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. Foliage benefits:
| - Bigger foliage
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- Bigger roots )
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Absence of spatial pattern for several other models

VOM over-estimates assimilation
Prescribing cover reduces over-estimation assimilation. More...
Evaporation at wetter sites under-estimated after prescribing

* VOM shows spatial pattern similar or better than other models

Fund
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* Temporal signal largely reproduced
* Model always reaches full cover
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FOLIAGE COSTS

Prescribing vegetation cover:
* Assimilation generally lower. See also the model comparison.
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FOLIAGE COSTS

Prescribing vegetation cover:
* Assimilation lower, but not always closer to observations
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* Large differences between other models and VOM-results
* Pattern over the transect
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Fund

Root depth trees [m]

- -

+*

+d® e YEH U

Howard Springs - 2015
HowardSprings
AdelaideRiver
Litchfield
DalyUncleared
DryRiver

SturtPlains

Study sites

Root depth grass [m]

10

o

o
Prescr\b(e) \\2/\ ‘fg?tggr;par\son
the V
{ —— SPA to
MAESPA
—— CABLE
— BIOS2
—— LPJGUESS
I I Stludy sités




Methods

Results

Introduction

{Previous

I

¢

Conclusions

Next )

ROOTING DEPTHS

* Prescribing roots worsens the under-estimation of E and A
in the dry season. See also the model comparison.
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WATER TRANSPORT COSTS

* Fluxes are sensitive to variations in the water transport costs
* Differences occur especially during the dry season
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* Vegetative cover during the dry season sensitive to cost factor
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WATER TRANSPORT COSTS

* Remotely sensed vegetation cover during the dry season

only reproduced with different cost factors per site.
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CONCLUSIONS

The VOM captured the temporal and spatial variation of carbon and
water fluxes similar or better compared to the conventional models.

Optimality-based vegetation cover has a consistent bias during the wet-
season reaching full cover. Traditional prescibed vegetation covers lead
to lower CO2-assimilation.

Introduction
Methods

Results

Optimality-based rooting depths result in a better reproduction of

Conclusions ;
| carbon and water fluxes during the dry season.

]

Re-calibration of water transport costs for each site resulted in a large
variation of the cost parameter for these costs.
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>, Intercomparison study by Whitley et al. (2016). From
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“N This figure shows
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“~] parameterizations.

the time serieé of an average year,
running mean.
The models BESS, BIOS2, LPJ-GUESS, SPA, CABLE

and MAESPA were used in a previous model

VOM, as it uses a carbon allocation scheme to
dynamically adapt vegetation. The other models mainly

The VOM-results of Schymanski et al. (2015) differ from
the new VOM-results due to differences in hydrological
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MODEL COMPARISON w55 | LIST )

* VOM shows spatial pattern similar or better than other models
* Absence of spatial pattern for several other models
* VOM over-estimates assimilation

Prescribing cove

Evaporation wett
roots. More...

1400 1

= =

400 1

1 evaporation and assimilation. Some models show this

This figure shows the mean annual fluxes of evaporation
and assimilation for the models and observations from
the flux towers. The sites are ordened from the wettest
site on the left (Howard Springs) to the driest on the right
(Sturt Plains).

The VOM shows a clear pattern of decreasing values of

too, but MAESPA and LPJ-GUESS do not show a

pattern over the transect. At the same time, LPJ-GUESS
is actually the most similar to the VOM as it dynamically |
models vegetation.
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* Fluxes are sensitive to variations in the water transport costs
* Differences occur especially during the dry season
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This figure shows the fluxes of evaporation and assimilation for
different values of the cost factor for water transport ¢, in

comparison with flux tower observations (blue).
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£ 1.2{MAECyg5=02

sz vegetated fraction (M,, -) and a cost factor (c,,, mol s-* m-3):
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especially during the dry season, as can be seen from this i
figure. ~ Back
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WATER TRANSPORT COSTS

* Vegetative cover during the dry season sensitive to cost factor

100

MAE Cn,10 = 26.27% | AR L \| ||'I Y I .
80 | MAE Crv.08 = 40.87% /\ p N | |'| I~ A [/\ e

60 \/\

Proj. Cover (%)

2006-01%
2006-07 -

This figure shows the projective vegetation cover for different
values of the cost factor for water transport c¢,, in comparison

with remote sensed vegetation cover (blue).
Water transport costs are a function of rooting depth (y,),

vegetated fraction (M,, -) and a cost factor (c,, mol s-* m-3):
Rv:Crv*MA yr

Different values of this cost factor lead especially during the dry
season to differences in the vegetative cover, as can be seen
from this figure. ~ Back
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* Remotely sensed vegetation cover during the dry season
only reproduced with different cost factors per site.
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This figure shows the mean vegetation cover during the dry
season (May-Sept.) for vegetation cover derived from fPar
(Donohue et al. 2016) and the results of the VOM for different
values of the cost factor for water transport.

It can be noted here that each site needs a different value of
this cost factor in order to reproduce the remotely sensed
vegetation cover. It could be argued that this cost factor is not
constant over the transect and is a function of other climatic
characteristics.
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This figure shows the mean vegetation cover predicted by the
VOM (red) and derived from remotely sensed fPar-data (blue).
It can be noted that the VOM always reaches 100% full cover
during the wet season, which is not realistic. This happened
consistently for all six study sites along the NATT.

Time series of vegetation cover were constructed based on the
remotely sensed vegetation cover in order to prescribe to the
VOM. This was done in order to assess whether improvements
in projective cover would also reduce over-estimations in the
especially CO2-assimilation.

The time series were constructed in two ways:

1. The mean monthly values of vegetation cover were repeated |

for all years, which is a common approach in land surface
modelling.

2. The actual values of remotely sensed vegetation cover were
used, but extended with the mean monthly values to cover the

full model period.
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FOLIAGE COSTS

Prescribing vegetation cover:
* Assimilation generally lower. See also the model comparison.
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The assimilation rates are generally lower for the VOM with
prescribed vegetation cover. This relates to the prescribed
vegetation cover being generally lower compared to the
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- This figure shows the CO2-assimilation for the VOM predicting
2 0.2 vegetation cover and the VOM that uses prescribed vegetation
S o0 cover.
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Prescribing vegetation cover:
* Assimilation lower, but not always closer to observations
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The mean annual values of CO2-assimilation show also that
prescribing vegetation cover leads to lower assimilation rates.
However, it is not directly clear whether prescribed or predicted
@ vegetation cover leads to mean annual fluxes closer to the
observations.
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ROOTING DEPTHS

* Large differences between other models and VOM-results
* Pattern over the transect
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This optimized rooting depths for trees and grasses show a
pattern over the transect. In comparison with other models, the
rooting depths also remain rather shallow. The VOM results of
2015 (Schymanski et al. 2015) predict different rooting depths
due to a different schematization and parameterization of the
hydrology.

LPJ-GUESS is the most similar to the VOM, as it uses a
carbon allocation scheme to dynamically model vegetation.
Therefore, the rooting depths of LPJ-GUESS were used to

prescribe to the VOM for comparison. ~ Back
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ROOTING DEPTHS

* Prescribing roots worsens the under-estimation of E and A
in the dry season. See also the model comparison.
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5 o This VOM-fluxes with optimized rooting depths show strong
S ool 1~ differences with the results with prescribed rooting depths.
2 < | Especially during the dry season, differences occur.
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