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Motivation and Objectives Treatments: Control, Heat, Drought-Heat Material and Methods
Recovery: Re-watering & temperature decrease

e 3-year-old Pinus sylvestris saplings

* Global climate pred.lctlons: combined heat & dro.ugf.\t 5 continuous gas e in C-free substrate
— Change of C allocation and storage - tree functioning? Pulse label: air with exchange e microbial wash
: : : : 45 atom% 13CO, [

* Scots pine = ecologically and economically important == effluxes of CO, * separate tree chambers

) predictions about resilience of our forests and 613CO, * close-to-realistic heat-drought scenarios
Re-watering = Measurements:

/ Research questions: \ = root respiration * Needle water potential (predawn & midday)
U

* Leaf temperature
 Dendrometer: Stem growth

» §13C analysis in plant tissues (bulk, water soluble com-
pounds, starch & cellulose) . |

1. How does carbon allocation to respiration, pools and n = 6/ treatment
biomass vary between recovery from heat and drought-
heat stress?

2. Are the retention times of recently assimilated C in the
different compartments and pools related to previous

. | ?:ﬂ..»; | Fig. 1: Chambers Re-watering
stress seve rlty? BN separated in above- and
belowground used for Leaf temperatur:
3. Is recently assimilated C preferably allocated to growth continuous gas e";“a“ge 401 ™ALL Control: 28.5°C
measurements an 4 \ Heat: 40°C
\or storage shortly after stress release? / labeling. Pulse-labeling 351 i \ | DroughtHeat: 44.5°C

! was conducted two days
after stress release.
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Fig. 3: Assimilation rate during pulse-labeling (left) and 613C of bulk needles S 2- T e |
directly after labeling (right) for the different treatments. o | | o T
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* Stable conditions when pulse-labeling was conducted < . yorexp
L o — o000l . —n - Fig. 2: Maximum and minimum daily temperature (upper panel) and daily mean soil moisture
e similar upta ke of label within the treatments o (lower panel) for the experimental period. Data are treatment averages and shaded areas
T show % SE. The bright yellow box indicates the intense drought period. The bright yellow line
S -0.057 """" highlights when 13CO, Pulse-labeling was conducted (2 days after re-watering).
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Fig. 5: Left: 613C of root respiration after pulse-labeling, averaged for 2h per treatment. Tissue control vd I U€es Wlth In 1d -30-
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Fig. 7: Stem area increment measured by dendrometers for the experimental period. Diameter

o Recent|y assimilated C is respired faster and in h|gher - fast recovery, ca. 90% of control increment from the beginning of the experiment is indicated for every treatment.
amounts from roots in control and previously heat- » Recovery of root respiration: Heat: fast recovery
stressed trees compared to drought-heat stressed trees . gradually, higher than control at end e M Control & DroughtHieat @ Heat

* This is supported by a longer retention time of 13C in o\_ggmoo- o : ; ;
needles of drought-heat stressed trees during the o o i | j
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> weels recovery per!Od. . ‘ Conclusion and Outlook g T ’ | | |

* These trees allocate significantly more new C to starch %g 2001 | | ﬁ ‘
in almost all tissues compared to control and previously R R * *
heat-stressed trees > delayed C transport capacity in previously o] et '% 8 - -?
oo : | _ drought-heat stressed trees indicates ongoing T Time after start of labeling h

: i i i i =] ContrcIJI E3 DroughtHeat §8 Hel-at repair processes Fig. 8: 613C of cellulose in roots (upper panel) and branches (lower panel) for the time after the

start of labeling.

> After stress release, these trees prioritize storage

: : e Control trees invest new C especially in root cellulose;
formation over growth to ensure future survival P Y
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004 ﬂ | _ _ . previously heat-stressed trees particularly in branch and
v f ‘ ' ﬁ I » Heat stress alone did not result in a persistent stem growth, which was confirmed by dendrometer
of * - -'-g" M . damage of trees, but rather in a compensation measurements
B 2rh San 7en 7d _1d 16d of stress-induced reductions in C uptake and
ime after start of labeling
Fig. 6: 613C of bulk needles for the time after the start of labeling. grOWt h

» Further steps: Compartmental modeling /
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