Field observations of rapid midwinter recharge in

a seasonally frozen bedrock aquifer
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Introduction

« Climate change predictions indicate
warmer and wetter winters in the northern
hemisphere

- Greater potential for winter recharge

« Seasonally frozen bedrock aquifers have
received little attention in the study of
winter recharge processes

« The impact of increased midwinter
warming and rain-on-snow (ROS) events
on winter recharge is uncertain:

 Increases from greater rainfall and more
frequent snowmelt?

* Decreases due to reduced permeability from
refreezing of melt water?

* Decreases from snowpack basal ice creating
a low permeability layer?
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Motivation

» A greater understanding of recharge
processes is needed to better inform
climate change models for water
resources in seasonally frozen
environments.

* There is a lack of understanding
regarding the impacts of midwinter

melts and ROS on bedrock recharge.
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Objectives

1. Identify the antecedent conditions
responsible for permitting or inhibiting
winter recharge in fractured rock.

2. Conceptualize the mechanisms for
midwinter recharge in fractured rock.




Bedrock wells: Bedrock Soil profiles: water

M ethOdS head & temp. temp. content & temp.

» Instrumented a fractured bedrock outcrop
located in eastern Ontario, Canada

* Monitoring of winter 2019-2020 (15-min
measurement interval)

« Hydrological sensors: Hydraulic
» Two soil profilers (SP1, SP2) measuring — Open
volumetric water content and temperature fracture

« Two bedrock wells (TW3, TW20) with
pressure transducers and temp. profile
* Three thermistors in bedrock

» Atmospheric sensors:

* Snow depth

* Rain and snow

« Air temperature and humidity
« Wind speed and direction

» Solar radiation
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Climate

« Average daily temperature for January,
February and March 2020 were warmer
than 30-year average

« January and March received 2.2X and
1.5X more rainfall than average,
respectively.

« Multiple small showmelt and ROS events
throughout February
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Midwinter warming/ROS example:

Antecedent conditions — repeated melts
and rain in December resulted ina 1-3 cm
basal ice layer

47 mm rain event January 11 resulted in
14 cm of ponded water

Not all ponded water drained before
freezing temps - froze as 6 cm ice layer




Heavy rain and ponding
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« Multiple recharge events occurred prior
to Jan. 11 despite frozen ground and thin
basal ice
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 Rain-on-snow events were more effective
at recharging groundwater than
snowmelt or rainfall alone
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« Midwinter recharge example:

Rapid hydraulic head rise of 2.2 m

Hydraulic Head (masl)

—TW20 - Temp at6 m

Rapid drop in groundwater
temperature (2 °C) indicating cold
recharge

Groundwater recession despite

multiple snhowmelt and ROS events
in February Nov 2019 Dec 2019 Jan 2020 Feb 2020 Mar 2020 Apr 2020
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Soil water content

* Midwinter recharge example:

« Deepest soil sensor (70cm) along
soil-bedrock contact responds first
followed by next deepest sensor

« Shallowest sensors responds last

* |In other events when basal ice or
frozen soil is present, shallow sensor
does not respond at all but deep does

Indicates infiltrating water is
bypassing frozen surface layer
along soil-bedrock contact

© Wright and Novakowski 2020. All rights reserved.

Vol. Water Content (m3/m3)

0
Nov 2019

Dec 2019

~~
™
=
S~~~
™
=
N
)
C
()
-
-
@)
o
| -
()
e}
©
=
Q
|-
)
()
S
=)
@)
>

0
10-Jan

Jan 2920" . Feb 2020 Mar 2020

12-Jan

14-Jan

Apr 2020




Conceptual models for midwinter recharge

[ Soil Saturation Rainfall Rainfall vs. Snowmelt Rainfall vs. Snowmelt Rainfall vs. Snowmelt
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(a) Late Fall / Early Winter (b) Midwinter (c) Late Winter (d) Late Winter / Early Spring
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Conclusions

« Rapid midwinter recharge can
still occur in seasonally frozen
bedrock despite thin basal ice
and frozen ground

» Recharge is enhanced by ROS

« Recharge can be inhibited by
extreme midwinter rainfall that
subsequently refreezes, forming
a low permeability surface layer

« Main mechanism allowing
midwinter recharge is along
soil-bedrock contact
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