Physical drivers of the Southern Ocean carbon sink in the past 60 years: simulations with a high-resolution ocean model

Lavinia Patara*, Jan K. Rieck, Claus W. Böning, Toste Tanhua GEOMAR Helmholtz Centre for Ocean Research Kiel * lpatara@geomar.de

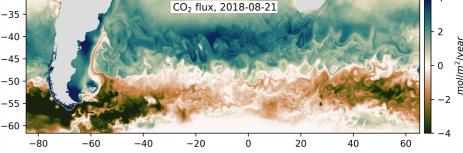
0.4

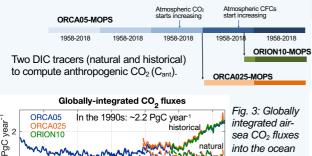
0.3

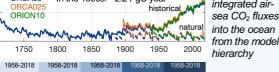
Motivation

The Southern Ocean's carbon sink underwent pronounced decadal

fluctuations in recent decades, but the underlying mechanisms are still not fully understood [Landschützer et al., 2015]. The aim of this study is to assess the physical drivers of Southern Ocean CO2 uptake in past decades using the newly-developed high-resolution ocean biogeochemistry model ORION10-MOPS (Fig. 1)




Fig. 1: Five day mean simulated CO₂ flux into the ocean in mol/m²/year on 21.08.2018 from ORION10-MOPS (spin-up)



Ocean model NEMO-LIM2 including CFC-12 and the biogeochemical model MOPS [Kriest and Oschlies, 2015

1) ORCA05, 2) ORCA025, 3) ORION10 (1/10° nest

from 68°S to 30°S). All forced by JRA55-do forcing [Tsujino et al., 2018].

Model assessment

-20

Fig. 2: Five

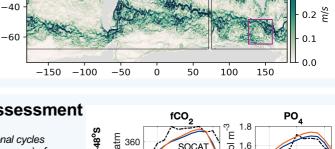
speed at 93m

day mean

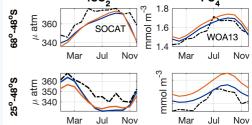
ORION10-

black lines

indicate the


boundaries of the 1/10°

MOPS. The


from

nest

Fig. 4: Seasonal cycles (2000-2018 average) of surface fCO2 and PO4 in model and observations [Bakker et al., 2016; Boyer et al., 2013]. Blue line: ORCA05, orange line. ORCA025. Top: 48°S-68°S, Bottom: 25°S-48°S

Speed at 93m depth, 2018-08-21

Southern Ocean ventilation and carbon uptake in the past decades

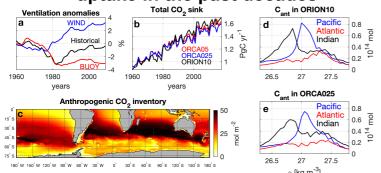


Fig. 5: a) Estimate of Southern Ocean ventilation changes in the past decades in a historical experiment (black line) and in the two sensitivity experiments WIND (blue line, where only wind stress is interannually varying) and BUOY (red line, where only air-sea buoyancy fluxes are interannually-varying) performed with ORCA025 [Patara et al., in review on Journal of Climate]; b) time series of annually-averaged CO₂ fluxes integrated south of 30°S in ORCA05, ORCA025 and ORION10, c) anthropogenic CO2 (Cant) inventory integrated over the water column in ORION10, d-e) Cant integrated in different basins and vertically in 0.05 neutral density bins in d) ORION10 and e) ORCA025. Panels c-e) show temporal averages over 2000-2009.

Summary and outlook

- 1. The model hierarchy captures the observed mean, seasonality and temporal evolution of the surface fCO₂ and air-sea CO₂ fluxes.
- 2. The models show a multi-decadal cycle of Southern Ocean ventilation (decrease until the 1980s, increase afterwards) driven by opposing effects of wind stress and buoyancy forcing \rightarrow what is the effect on anthropogenic CO₂ uptake?
- 3. The model hierarchy shows a steady increase in the Southern Ocean carbon sink over past decades, with a stalling in the 1990s → what are the physical drivers?
- 4. With respect to lower-resolution models, in ORION10 the trend in total carbon uptake is steeper and the uptake of Cant in mode waters is higher. \rightarrow How do ocean mesoscale eddies influence the carbon uptake?

Bakker, D.C.E. et al. (2016), A multi-decade record of high-quality (CO(2) data in version 3 of the Surface Ocean CO2 Allas (SOCAT), Earth System Science Data; Boyer, T.P. et al. (2013); World Ocean Databit Lavitus, Ed., A Mishonev, Technical Ed.; Silver Spring, MD, 205 pp.; <u>third/ice.org/10/2580/SSR251</u>; Follows, M.J., Ilo, T., Dukkewicz, S. (2006); On the solution of the carbonate chemistry system in ocean t Modellina, 12(-3), 492-031; Kriese, L., and A. Oschilles (2015), MOP-10: towards a model for the requilation of the place account informatic processes, Geosci. Model Dev., J. 2929-2015; Landschützer, P. et al. (2015). The enimigration of the southance of an advance in the grade advance in the southance of advance in the southance of the southance of

Reference