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Fig.1. The general scheme of all structure data processing starting from 3D pore images: CFs

computation (250 parameters for each CF) → CFs fitting to 6 parameters → cluster analysis

→ L2-norm analysis → comparison against land use information → detailed comparison of all

results to pore images.

In total 16 3D images with sizes of 900-

13003 voxels with porosities of 0.009-

0.202. They were classified into two 

and three groups according to soil use.
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Normalization by porosity for all 

utilized correlation functions: two-

point probability, lineal, cluster and 

surface-surface.

Calculation of directional 

correlation functions: S2-

two-point probability, L2 –

linear, C2 – cluster functions.

Fig.2. The worst (upper row) and best (lower row) fits (Fitted) using Eq.3 to describe computed

correlation functions (Data) for: a) ensemble C2 function for Sample 13, b) ensemble SS2

function for Sample 1, c) ensemble L2 function for Sample 8, and d) ensemble S2 function for

Sample 9.
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Each correlation function was fitted with the superposition of the three most 

flexible basis functions, i.e., exponential, dumped oscillating and polynomial 

functions as proposed by Jiao et al. (2008):

where 𝛼1, 𝛼2 and 𝛼3 the weights for each basis function, a, b and c are

the scaling coefficients for the basis functions, q is oscillating frequency

and 𝜓 is the phase angle.



Fig.3. The results of clustering of: a) based L2-norm for 250-length vector of ensemble

average for all CFs into 2 categories, b) for 6-length vector of fitted parameters into 2

categories, c) for 250-length vector of ensemble average for all CFs into 3 categories, and d)

for 6-length vector of fitted parameters into 3 categories. Note that sample 1 is removed from

the cluster analysis.

The clustering is completely different for CFs and fitted parameters. It turned 

out that the parameters may be very sensitive to the smallest changes in the 

functions. In other words, two correlation functions than differ only slightly 

may have parameters that vary significantly. On the other hand, if parameters 

are very close for two CFs, this means that they are indeed matching. See next 

slide.

The clustering based on either CFs or parameters was unable to catch the 

trends in soil use (2-category classification: arable and post arable, 3-category 

classification: bare fallow, afforestation, cereals) 

One can immediately pose a question if we can find such basis

functions that fitted parameters always behave similar to CFs. This is a

non-trivial question from the mathematical point of view, and our current

vision suggests it is unlikely that any potential set of basis functions may

result in such fits.

Regardless of future direct applicability of fitted parameters one can

always “unpack” correlation functions from such parameters (Fig.2) to utilize

for analysis or machine learning. In this sense fitting using basis functions is

still a very useful procedure to compress data.



Fig.4. Heatmaps of differences between soil samples in terms 

of: a) ensemble averaged correlation functions and b) fitted 

parameters for these correlation functions.

Fig.5. Heatmap rankings of differences between soil samples 

in terms of: a) ensemble averaged correlation functions and b) 

fitted parameters for these correlation functions.

Again, the differences between samples in 

terms of CFs and fitted parameters do not 

agree completely. Yet, we do observe all 

major outliers such as Sample 1.

Thus, the usage of fitted parameters for 

statistical analysis may be compromised.

The choice of three basis functions as employed 

in this work provides a reasonable trade-off 

between the number of parameters and goodness 

of fit, but a potentially better set of correlation 

functions could be found in future studies.

careful analysis of soil 3D images (and their 

cross-sections) and correlation functions 

clearly indicated that there were visually very 

similar pore structures within different soil 

horizons as developed under different land 

use conditions (Fig.6). On the other hand, soil 

taken from similar horizon or land use may 

have a very different structure (Fig.7).



Fig.6. The 3D pore structure visualizations and three cross-sections close to top, middle and 

bottom along the z-axis for samples with minimum difference in terms of L2-norm for two 

pairs of samples: a) Samples 5-12 (arable/bare fallow and arable/cereals land use categories, 

respectively) and b) Samples 9-15 (post arable/afforestation and arable/cereals).

Fig.7. The 3D pore structure visualizations and three cross-sections close to top, middle and 

bottom along the z-axis for samples with maximum difference in terms of L2-norm for two 

pairs of samples: a) Samples 1-11 (arable/bare fallow and arable/cereals land use categories, 

respectively) and b) Samples 2-16 (post arable/afforestation and post arable/afforestation).



3D soil pore structure

Correlation functions 

from 3D image

CFs – computed and 

fitted (unpacked from 

parameters)

CFs – fitted 

parameters

4 CFs × 3 directions × 6 

parameters =  72 parameters

Summary

In this study we successfully compressed the soil structural

information in the form of 3D binary images into a set of

correlation functions each of which is described using fitted 6

parameters. We utilized four different correlation functions

(two-point probability, lineal, cluster and surface-surface

functions) computed in three orthogonal directions for the

pores. The methodology was applied to 16 different soil 3D

images obtained using X-ray microtomography and segmented

into pores and solids. All computed CFs were fitted using a

superposition of three basis functions. In other words, we

reduced 900-13003 voxels images into sets of 72 parameters.

Fitting of computed correlation functions and reducing

them to a number of parameters is a powerful way of

compressing soil structural information. However, the analysis

based on parameters alone is different from the one where

correlation functions are used, as was observed from clustering

statistics. This problem can be negated by uncompressing the

correlation functions back from these parameters before any

application. This way correlation functions are not only a way

to compress the soil structural information with minimal loss,

but also may be utilized to solve a number of additional

problems: comparison and differentiation of soil samples,

location of elementary volumes, effective physical property

prediction using machine learning, fusion of hierarchical soil

structures.



The paper with detailed description of all results is currently under review with EJSS journal. 
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