EHzürich

Temporal variations in ITRF station displacements analyzed with vector spherical harmonics

B. Soja¹, C. Abbondanza², T.M. Chin², R. Gross², M. Heflin², J. Parker², X. Wu²

¹ ETH Zurich; soja@ethz.ch
² Jet Propulsion Laboratory, California Institute of Technology

© 2020. All rights reserved.

#shareEGU2020

Introduction

- Goal: study global features of time-dependent station coordinate variations in ITRF solutions
 - DTRF2014: non-tidal loading displacements provided (atmosphere and continental water storage)
 - JTRF2014: time series approach to TRF determination by Kalman filtering; weekly station positions provided
- New approach: vector spherical harmonics (VSH) to estimate global displacements from all three coordinate components
- Comparison to scalar spherical harmonics based on the vertical coordinate component (largest signals) and Helmert transformation parameters

Vector spherical harmonics up to degree-2

 $\Delta\lambda\cos\phi = -T_x\sin\lambda + T_y\cos\lambda$ $-R_1\sin\phi\cos\lambda - R_2\sin\phi\sin\lambda + R_3\cos\phi$ longitude $-a_{2,0}^{M}\sin 2\phi$ $-a_{21}^{E,\Re}\sin\phi\sin\lambda - a_{21}^{E,\Im}\sin\phi\cos\lambda$ $+a_{21}^{M,\Re}\cos 2\phi\cos\lambda - a_{21}^{M,\Im}\cos 2\phi\sin\lambda$ $+a_{2,2}^{E,\Re}\cos\phi\sin 2\lambda + a_{2,2}^{E,\Im}\cos\phi\cos 2\lambda$ $+ \frac{1}{2}a^{M,\Re}_{2,2}\sin 2\phi\cos 2\lambda - \frac{1}{2}a^{M,\Im}_{2,2}\sin 2\phi\sin 2\lambda$ $\Delta \phi = -T_x \sin \phi \cos \lambda - T_y \sin \phi \sin \lambda + T_z \cos \phi$ $+R_1\sin\lambda - R_2\cos\lambda$ latitude $-a_{20}^E \sin 2\phi$ $+a_{2,1}^{E,\Re}\cos 2\phi\cos\lambda - a_{2,1}^{E,\Im}\cos 2\phi\sin\lambda$ $+a_{2,1}^{M,\Re}\sin\phi\sin\lambda+a_{2,1}^{M,\Im}\sin\phi\cos\lambda$ $+\frac{1}{2}a_{2,2}^{E,\Re}\sin 2\phi\cos 2\lambda - \frac{1}{2}a_{2,2}^{E,\Im}\sin 2\phi\sin 2\lambda$ $-a_{2,2}^{M,\Re}\cos\phi\sin 2\lambda - a_{2,2}^{M,\Im}\cos\phi\cos 2\lambda$ $\Delta r = D$ $+T_x \cos\phi \cos\lambda + T_y \cos\phi \sin\lambda + T_z \sin\phi$ $-a_{2,0}^E\sin^2\phi - \frac{1}{2}$ radial $+\frac{1}{2}a_{2,1}^{E,\Re}\sin 2\phi\cos\lambda - \frac{1}{2}a_{2,1}^{E,\Im}\sin 2\phi\sin\lambda$ $-a_{2,2}^{E,\Re}\cos^2\phi\cos 2\lambda - a_{2,2}^{E,\Im}\cos^2\phi\sin 2\lambda$

Degree 0: scale D

Degree 1: rotations R and dipole deformations T (= translations)

Degree 2: quadrupole deformations a

ETH zürich

Vector spherical harmonics vs. Helmert parameters

 $\Delta\lambda\cos\phi = -T_x\sin\lambda + T_y\cos\lambda$ $-R_1\sin\phi\cos\lambda - R_2\sin\phi\sin\lambda + R_3\cos\phi$ longitude $-a_{2,0}^{M}\sin 2\phi$ $-a_{21}^{E,\Re}\sin\phi\sin\lambda - a_{21}^{E,\Im}\sin\phi\cos\lambda$ $+a_{2,1}^{M,\Re}\cos 2\phi\cos\lambda - a_{2,1}^{M,\Im}\cos 2\phi\sin\lambda$ $+a_{2,2}^{E,\Re}\cos\phi\sin 2\lambda + a_{2,2}^{E,\Im}\cos\phi\cos 2\lambda$ $+\frac{1}{2}a_{2,2}^{M,\Re}\sin 2\phi\cos 2\lambda - \frac{1}{2}a_{2,2}^{M,\Im}\sin 2\phi\sin 2\lambda$ $\Delta \phi = -T_x \sin \phi \cos \lambda - T_y \sin \phi \sin \lambda + T_z \cos \phi$ $+R_1\sin\lambda - R_2\cos\lambda$ latitude $-a_{20}^E \sin 2\phi$ $+a_{21}^{E,\Re}\cos 2\phi\cos\lambda - a_{21}^{E,\Im}\cos 2\phi\sin\lambda$ $+a_{2,1}^{M,\Re}\sin\phi\sin\lambda+a_{2,1}^{M,\Im}\sin\phi\cos\lambda$ $+\frac{1}{2}a_{2,2}^{E,\Re}\sin 2\phi\cos 2\lambda - \frac{1}{2}a_{2,2}^{E,\Im}\sin 2\phi\sin 2\lambda$ $-a_{2,2}^{M,\Re}\cos\phi\sin 2\lambda - a_{2,2}^{M,\Im}\cos\phi\cos 2\lambda$ $\Delta r = D$ $+T_r \cos\phi\cos\lambda + T_u\cos\phi\sin\lambda + T_z\sin\phi$ $-a_{2,0}^E\sin^2\phi - \frac{1}{2}$ radial $+\frac{1}{2}a_{2,1}^{E,\Re}\sin 2\phi\cos\lambda - \frac{1}{2}a_{2,1}^{E,\Im}\sin 2\phi\sin\lambda$ $-a_{2,2}^{E,\Re}\cos^2\phi\cos 2\lambda - a_{2,2}^{E,\Im}\cos^2\phi\sin 2\lambda$

$$\Delta \vec{X} = D\vec{X} + \vec{T} + \mathbf{R}\vec{X}$$

Degree 0: scale D

Degree 1: rotations R and dipole deformations T (= translations)

Degree 2: quadrupole deformations a

Г

Vector vs. scalar spherical harmonics

VSH of DTRF2014 non-tidal displacements

Largest signals for translations, in particular Tz

Degree-2 terms almost reach 1 mm

VSH of different DTRF2014 NT displacements

Std. dev. [mm]	NTAL	CWSL	Sum
D	0.27	0.23	0.31
Тх	0.61	0.77	0.9
Ту	1.09	0.98	1.25
Tz	1.68	1.92	2.59
R1	0.15	0.14	0.16
R2	0.14	0.12	0.15
R3	0.25	0.12	0.2
a ^E _{2,0}	0.14	0.16	0.2
a ^M _{2,0}	0.32	0.09	0.26
a ^{E,Re} _{2,1}	0.31	0.39	0.46
a ^{E,Im} 2,1	0.18	0.53	0.55
a ^{M,Re} 2.1	0.11	0.11	0.13
a ^{M,Im} 2.1	0.19	0.32	0.31
a ^{E,Re} 2,2	0.3	0.17	0.24
a ^{E,Im} 2,2	0.1	0.23	0.22
a ^{M,Re} 2,2	0.2	0.25	0.29
a ^{M,Im} 22	0.32	0.12	0.22

After 1995 NTAL: weekly CWSL: monthly Sum: monthly

Different contributions from atmosphere and continental water storage loading to certain terms

VSH vs. Helmert parameters for DTRF2014

Sub-mm differences

Vector vs. scalar SH for DTRF2014

Differences exceed 1 mm

VSH of JTRF2014 coordinate displacements

Displacements defined as coordinate time series minus linear fit

Based on observations → contain more signals (and errors) than NT model of DTRF2014

Before 1995: stronger variations due to smaller networks and worse data quality

Comparison between DTRF2014 and JTRF2014

Std. dev. [mm]	DTRF2014	JTRF2014
D	0.31	1.31
Тх	0.9	1.46
Ту	1.25	2.32
Tz	2.59	2.34
R1	0.16	0.38
R2	0.15	0.47
R3	0.2	0.49
a ^E _{2,0}	0.2	0.47
a ^M _{2,0}	0.26	0.58
a ^{E,Re} 2,1	0.46	0.51
a ^{E,Im} _{2,1}	0.55	0.74
a ^{M,Re} 2,1	0.13	0.41
a ^{M,Im} 2,1	0.31	0.36
a ^{E,Re} 2,2	0.24	0.58
a ^{E,Im} 2,2	0.22	0.53
a ^{M,Re} 2,2	0.29	0.55
a ^{M,Im} 2,2	0.22	0.49

After 1995

DTRF2014:

NTAL+CWSL (monthly)

JTRF2014 (weekly) with larger variations, except for Tz

VSH vs. Helmert parameters for JTRF2014

Sub-mm differences after 1995

Vector vs. scalar SH for JTRF2014

Degree-2 terms much more variable for scaler spherical harmonics, exceeding 5 mm for $a_{2,0}$

Conclusions

- Applied vector spherical harmonics to study time series of coordinate displacements
- Fundamentally different results for DTRF2014 and JTRF2014 due to model- vs. observation-based approach
- Global features at the mm-level for certain degree-2 terms
- Differences between Helmert transformation parameters and VSH below 1 mm
- Differences between scalar and vector SH larger than 5 mm for certain terms

Thank you very much!

soja@ethz.ch

EHzürich

© 2020. All rights reserved.

U.S. Government sponsorship acknowledged.