A global circulation model for the asteroid impact simulations

Hakan Sert, Orkun Temel, Cem Berk Senel,

Ozgur Karatekin

ROYAL OBSERVATORY of BELGIUM

Summary

- planetWRF model [1], a multiscale atmospheric model being used for Mars, Titan and Venus, is modified for Earth/Paleoclimate simulations
- The model is applied to model the atmospheric response of the Cretaceous–Paleogene (K–Pg) extinction event [2] which took place 66 million years ago and resulted in the mass extinction of various animal and plant species.
- The radiation parameterization scheme of the planetWRF model is modified to include the effect of various climate-active aerosols and gases released after the impact event.
- The atmospheric model is coupled with a 1D mixed layer model [3], coupling with a 3D ocean model [4] is still under development.

[1] Richardson, M. I., + JGR: Planets, 2007. [2] Schulte, P.+, Science, 2010. [3] Pollard, R. T.+, Geophys. Fluid. Dyn., 1973
[4] CY Lee and S. S. Chen, J. Atmos. Sci., 2012

planetWRF

Location of the Chicxulub impact crater. http://craterexplorer.ca/chicxulub-impact-structure/ According to hydrocode simulations performed by Pierazzo et al. [1], the amount of climatically active gases released in to the atmospheres:

- 350-3500 Gt of carbon dioxide
- 40-560 Gt of sulfur
- 200-1400 Gt of water vapor

Vertical distribution of injections are prescribed according to Toon et al. [2]

[1] E. Pierazzo et al., J. Geophys. Res. (1998).[2] Toon, O. B., et al. Atmospheric Chemistry and Physics 16.20 (2016): 13185-13212.

A global circulation model for the asteroid impact simulations

planetWRF – Earth/Paleoclimate simulations

GCM simulations are perfomed using a modified version of planetWRF (a multiscale – from global scale to microscale – atmospheric model being used and developed at the Royal Observatory of Belgium.

[1] Upchurch Jr+, Geology 43, no. 8 (2015): 683-686.

Surface temperature – before/after 1 year the impact event

Sulfur aerosols blocks the sunlight and reduces the surface temperature after the impact event. As a result of the thermal inertia difference between ocean and land, a strong surface temperature gradient remains after the impact.

Surface Temperature [K]

A global circulation model for the asteroid impact simulations

Tropospheric winds – before/after 1 year the impact event

Despite the ocean-land temperature difference, temperature gradients weaken in the troposphere and it leads to weaker zonal and meridional transport.

Oceanic mixed layer depth – before/after 1 year the impact event

However, the near-surface meteorology is driven by strong temperature differences, leading to constant sea breeze conditions during the impact winter. High near surface winds deepens the oceanic mixed layer after the impact.

Sea ice accretion possibility

The model currently lacks an ice-sheet model but we find that poleward of 45 N/S latitude, surface meteorological

conditions over the ocean permits the existence of sea-ice after the impact.

A global circulation model for the asteroid impact simulations

Conclusions and ongoing work

- We modified the planetWRF model to model the environmental conditions before and after the K/Pg boundary impact event.
- The impact winter is simulated successfully.
 - Land/sea temperature difference of ~50 K
 - Weakened tropospheric transport
 - Strong offshore conditions due to sea breeze
- Coupling with a 3D ocean model and ice-sheet model is under development
- Simulations using the inputs of newer hydrocode simulations [1] other than Pierrazzo et. Al [2]

[1] Artemieva, N., Morgan, J. +, Geophysical Research Letters, 44(20), pp.10-180. [2] E. Pierazzo et al., J. Geophys. Res. (1998).