Coupling bottom-up process modeling to atmospheric inversions to constrain the Siberian methane budget

Mathias Göckede¹
Philipp de Vrese²
Victor Brovkin²
Tonatiuh Guillermo Nunez Ramirez¹
Frank-Thomas Koch¹
Christian Rödenbeck¹

¹Max-Planck-Institute for Biogeochemistry, Jena, Germany ²Max-Planck-Institute for Meteorology, Hamburg, Germany

Motivation

- Methane is an important greenhouse gas
 - Many uncertainties remain about dominating processes, and resulting flux budgets, both at global and regional scales
- Bottom-up process modeling of methane as an important tool to analyze the methane cycle, and make forecasts
 - Larger scale representativeness of simulation results is difficult to evaluate
- Atmospheric inversions provide a powerful tool to constrain larger scale flux budgets
- Aim: Use coupling between bottom-up and top-down to evaluate performance of process model configurations

Process model: JSBACH

Recent upgrades to support CH₄ simulations in permafrost:

- Formation of inundated areas
- Formation of wetlands
- Soil methane production, incl. gas transport in soils
- Permafrost-specific soil physics and C-cycle elements

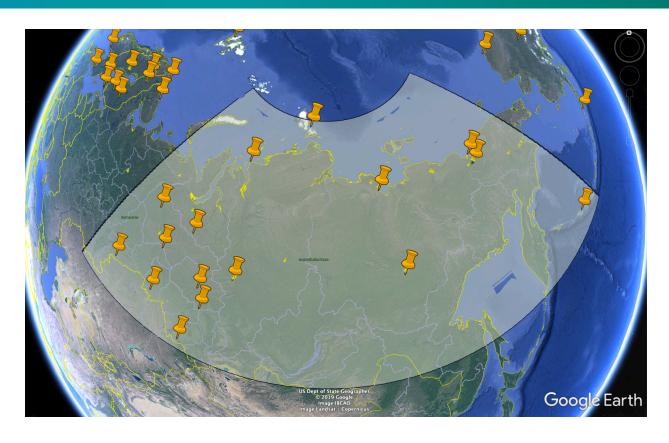
Explore parameter ranges to test model sensitivity

- Soil water characteristics in connection with freeze/thaw dynamics
- Soil thermal characteristics (e.g. heat capacity, conductivity)
- Anaerobic decomposition, nitrogen limitation
- ≥20 scenario implementations overall

More info:

Recent model upgrade: de Vrese et al. (Cryosphere, submitted) Ekici et al. (GMD, 2014); Kleinen et al. (CPD, 2019), Brovkin et al. (JAMES, 2013); Raddatz et al. (Clim. Dyn, 2007); Reick et al. (JAMES, 2013)

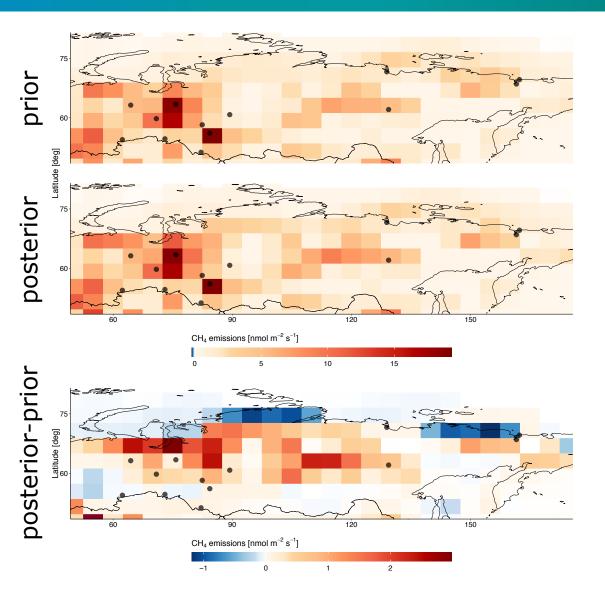
Atmospheric inversion: Jena CarboScope


- Estimation of surface-atmosphere exchange rates, with focus on temporal variations
- Allows to integrate various types of measurements
 - Here, only surface-based CH₄ time series have been used
- Global and regional modeling domains possible
 - Here, we used TM3 transport to simulate fluxes on a global grid with a 5 x 3.75 degree resolution
- Optimize fluxes for period 2010-2015, monthly timestep

More info

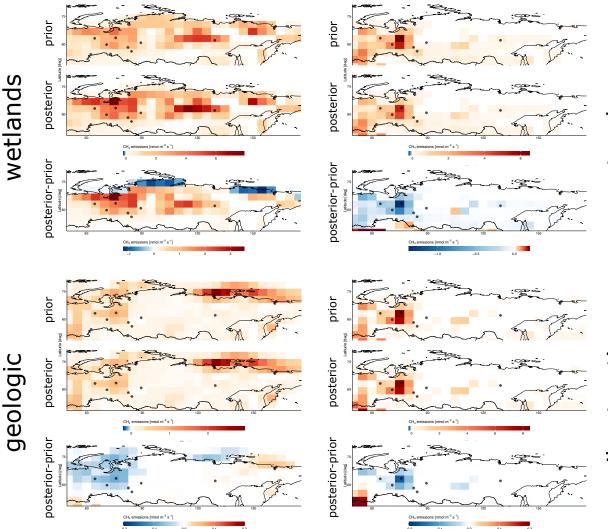
- https://www.bgc-jena.mpg.de/CarboScope/
- Rödenbeck et al., Biogeosciences (2018); Rödenbeck et al., Atmos. Chem. Phys. (2006; 2003)

Target domain: Siberian CH₄ fluxes



- Main study domain: 50-180E, 50-80N
- Domain contains 15 towers that provide continuous CH₄ mixing ratio time series.
 - 2 of those (BAR, DIK) not used here, active only after 2015

Simulated CH₄ emission grids

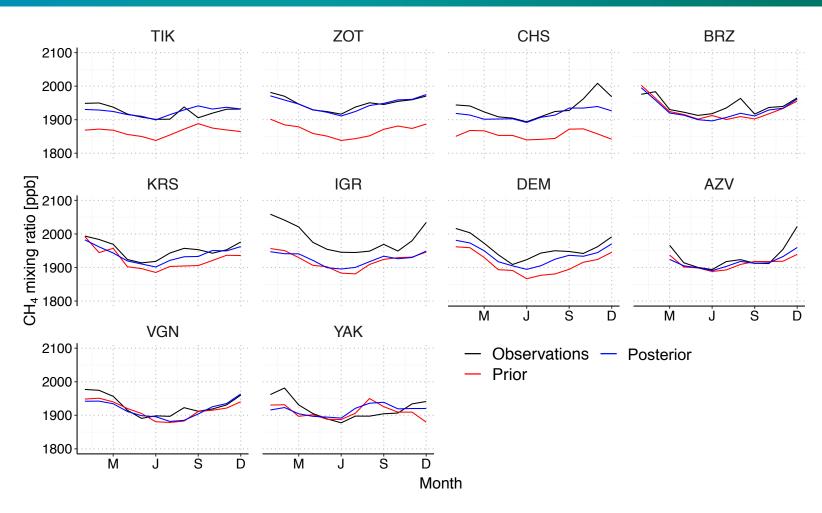

- Regional prior flux patterns are generally preserved in optimized posteriors
- 2. The averaged flux rates for Siberia increase with optimization
- 3. Optimization reduces prior flux rates along the Arctic coast, but increases them in large parts of central and Western Siberia

Flux shifts separated by emission source

- 1. The largest part of the net flux changes can be attributed to wetland sources
- 2. Emissions from oil and gas extraction were largely reduced in W Siberia
- 3. From 14 source types analyzed, 10 received few to no changes

(please note the different units per source type!)

Regional flux budgets: GCP region ,Russia'



Process	Prior [Tg/yr]	Posterior [Tg/yr]	abs. difference [Tg/yr]	rel. difference [%]
Fossil fuel combustion	0.23	0.23	0.00	1.46
Livestock & manure	2.89	2.86	-0.03	-1.19
Waste management	5.37	5.56	0.20	3.68
Coal mining	4.32	4.40	0.07	1.72
Oil production	3.80	3.96	0.16	4.34
Natural gas production	5.64	4.88	-0.75	-13.36
Biofuel combustion	0.28	0.28	0.00	-0.09
Vegetation	0.03	0.03	0.00	0.00
Natural fauna	1.22	1.22	0.00	0.01
Oceans	0.08	0.07	0.00	-4.09
Geologic	2.95	2.91	-0.04	-1.22
Biomass burning	0.88	0.92	0.04	5.01
Rice agriculture	0.10	0.12	0.01	14.42
Wetlands	9.63	12.50	2.86	29.74
Total	37.41	39.95	2.54	6.78

- Total: Minor adjustment towards higher CH₄ budgets
- Wetlands: Strong relative increase in CH₄ emissions!

Mixing ratios at Siberian towers

- Only minor adjustments for most sites in Western Siberia
- Substantial low bias in priors for Northern sites (TIK, CHS)

Conclusion, outlook

Process model evaluation

- Current results indicate a low bias in global CH₄ emissions
 - Both prior and posterior budgets align with ranges in GCP estimates
- In the Siberian domain, particularly wetland sources have been underestimated
- Inverse optimization revealed strong regional gradients in Siberia, with fluxes overestimated in Northern domain, underestimated otherwise

Next steps

- Prior model has been adjusted recently, new output will be tested
- Detailed evaluation of output fields from individual process model implementation to identify optimum parameter settings
- Higher resolution simulations, including regional-scale inversions