

Deutsches GeoForschungsZentrum GFZ German Research Centre for Geosciences, Potsdam, Germany

Hydrogen isotopes in phlogopite indicate crustal fluids in the UG2 layer, Bushveld Complex

Haoyang Zhou^{1*}, Robert Trumbull¹, Ilya Veksler¹, Ilya Bindeman², Johannes Glodnya¹, Rik Tjallingii¹, Felix E.D. Kaufmann³

¹GFZ German Research Centre for Geosciences, Germany ²Department of Earth Sciences, University of Oregon, USA ³Museum für Naturkunde Berlin, Germany

The Bushveld Complex: the world's largest igneous intrusion on Earth

Rustenburg Layered Suite (RSL)

- ultramafic-mafic
- main source for PGE, Cr and V
- crustal contamination (high initial Sr, Nd, Pb, Os)

The Upper Group 2 (UG2) chromitite: the world's largest PGE ore bodies

Water probably play important roles!!! Internal or external?

- locally abundant hydrous minerals, melt inclusions rich in volatile
- addition of H₂O to melts causing the melts only saturated in Chr

Tracing water origins by the hydrogen isotopes in phlogopite

The phlogopite in the UG2 chromitite

- micro-XRF element maps: 1-3 vol.% phlogopite in the chromitite
- Opx replaced by Phl; Phl coexisting with late magmatic phases

Composition of phlogopite in the UG2 chromitite and adjacent rocks

- relatively constant through the UG2 but within a wide range in the adjacent rocks
- rich in halogens (up to 0.47 wt.% Cl and 0.64 wt.% F)

Hydrogen isotopes in phlogopite indicate crustal fluids in the UG2 layer

Nkwe

chromitite: -38.2 to -25.5‰

silicate rocks: -43.1 to -26.1‰

Khuseleka

chromitite: -34.6 to -31.3%

silicate rocks: -38.7 to -26.1‰

- mantle: -80 ± 10‰ (Kyser and O'Neil, 1984)
- Candidates for crustal endmembers in the Transvaal Supergroup (sandstone and shale)
 porewater: -5 ± 7‰ (Clayton et al., 1966)
 dehydration of clay minerals: -15‰

local meteoric water: -20‰

Calculation suggests significant amounts of crustal fluids incorporated in the UG2 magmas