Complementing urban rainfall/flood monitoring using low-cost citizen observatories: first result and challenges

Boud VERBEIREN^{1,2}, Kim TONDEUR¹, Solomon SEYOUM¹, David PIREAUX²

¹ Vrije Universiteit Brussel, Department of Hydrology and Hydraulic Engineering, Brussels, Belgium
² Brussels Company for Water Management (SBGE/BMWB), Direction Exploitation, Brussels, Belgium

Contact: Boud.Verbeiren@vub.be

Problem statement

If aiming at an **EARLY WARNING SERVICE** for **PLUVIAL FLOODING** in cities, near real-time **MONITORING of RAINFALL INTENSITY** is a core element.

Pluvial floods are typical the result of intense rainfall, triggering a fast hydrological response in cities. During summer convective rainfall events can be very localized.

Within the FloodCitiSense project we are exploring the potential of low-cost citizen observatories for high-density monitoring of intense rainfall and pluvial flooding in three pilot cities: Brussels, Rotterdam and Birmingham.

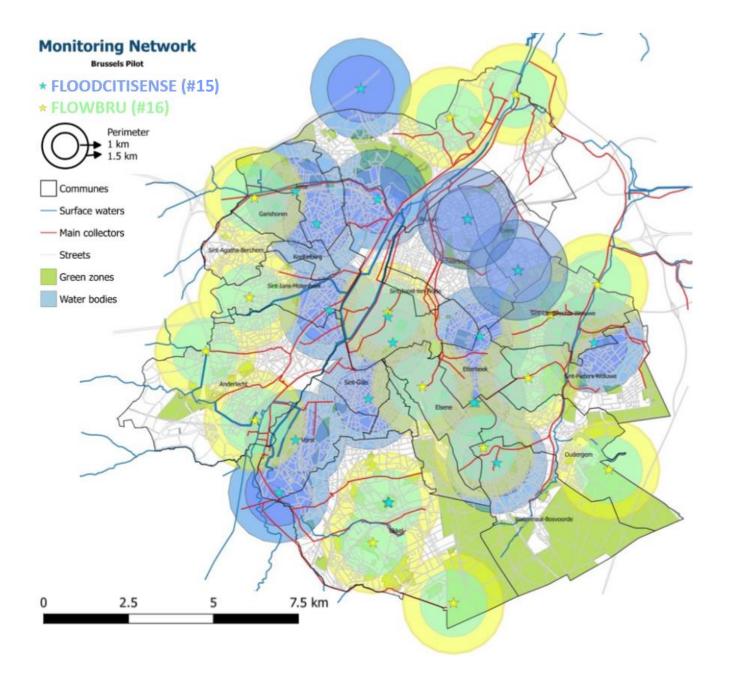
Low-cost RAIN sensors

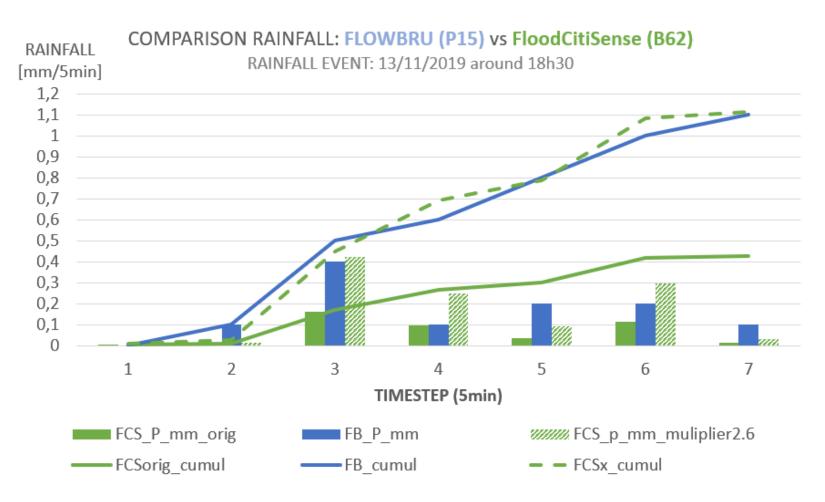
Second generation sensor

- Acoustic precipitation gauge
- Battery alimented by efficient solar panel
- Data transmission via LoRa technology

Sensors components provided by Disdrometrics and assembled during **Citizen Science workshops** in Brussels, Rotterdam and Birmingham (# 50 participants)

Open data via our Web and Mobile App


Low-cost rain sensor Disdrometrics


Brussels Pilot

15 low-cost sensors were installed with help of citizens, aiming at filling the "gaps" of the existing professional rain gauge network Flowbru.be (16)

A better spatial coverage was achieved via the low-cost rain sensors (blue on map) complementing the professional rain gauges (yellow/green)

Preliminary results: event

FLOWBRU

HIGH-ACCURACY WEIGHING RAIN GAUGE

POWER GRID (230V)

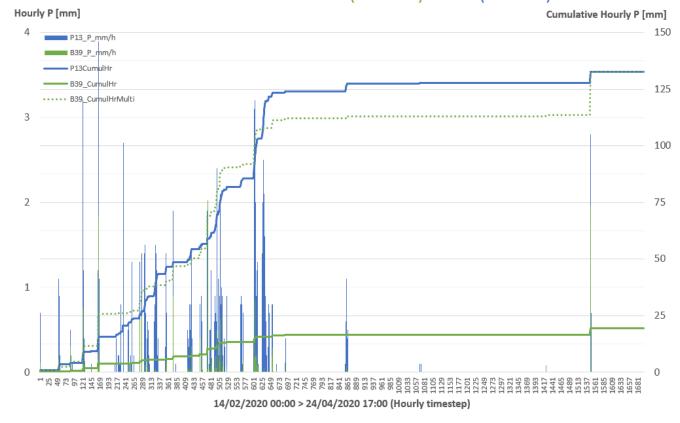
FloodCitiSense

LOW-COST

ACCOUSTIC RAIN GAUGE

BATTERY (4V)

Preliminary results: global performance


FloodCitiSense vs Flowbru

COMPARISON OF HOURLY

RAINFALL RATES

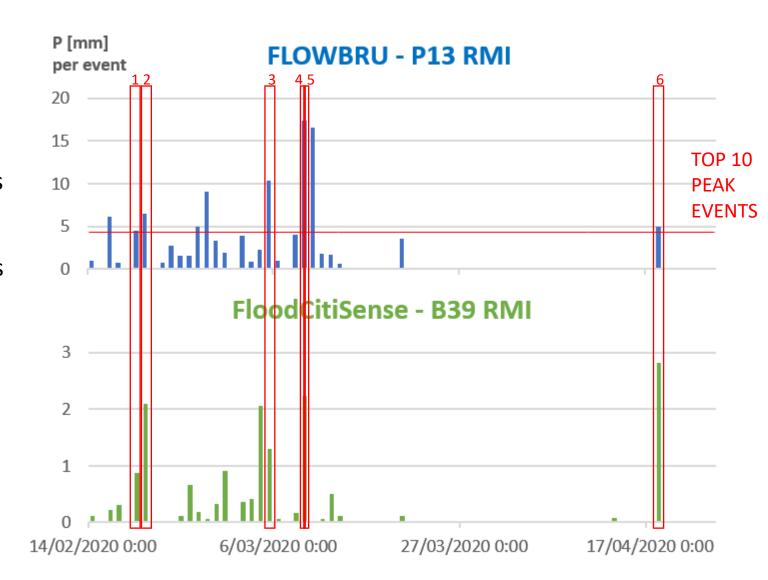
- Cumulative curves show relatively <u>high correlation</u> (0.72) between 2 timeseries
- Clear <u>underestimation of</u> <u>absolute rainfall</u> rates

COMPARISON HOURLY P: B39 (low-cost) vs P13 (Flowbru)

PACKAGES RECEIVAL RATE

Overall rate: 95%

 White color indicates loss of packages (=data loss) # PACKAGES RECEIVED - HOURLY B39 - 14/02/2020 > 24/04/2020


Preliminary results: peak rainfall

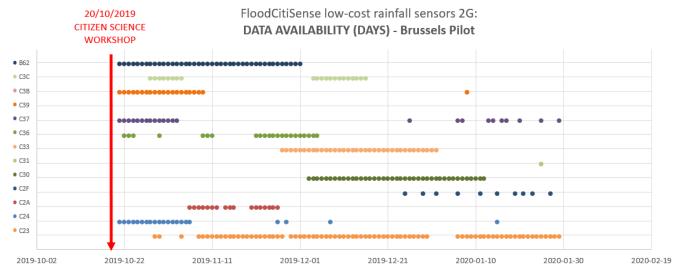
FloodCitiSense vs Flowbru

COMPARISON OF **PEAK**

RAINFALL EVENTS

- Peak rainfall of TOP 10 events is ranging from 4.4 up to 17.4 mm per hour (high-accuracy rain gauge of Flowbru at same site is used as reference)
- From the TOP 10 events only 6
 were registered by low-cost
 rainfall sensor (red boxes on
 graph)

Challenges low-cost sensors


LoRa > using Global Open LoRaWAN network

PACKAGES RECEIVED - HOURLY

- Theoretical ranges of gateway and sensors are much lower เกา urban context
- <u>Problems</u>: no connection, unstable connection = loss of packages, etc.
- <u>Solution</u>: Extra OWN gateways installed!
- Result > important data gaps!

Batteries

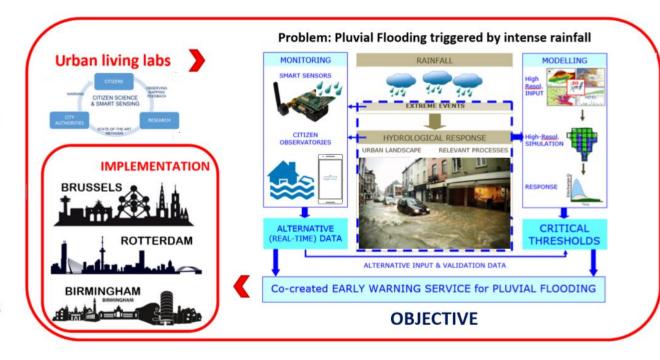
- Major challenge during winter (low sun)
- Many sensors lost connection
- Revival of some sensors (7) in spring ☺

Absolute values of rainfall intensities

- Comparison with high-accuracy Flowbru sensors shows considerable differences in measured rainfall
- Working on calibration of conversion rate (Disdrometrics)

Conclusions

- In urban context installation of low-cost sensors is challenging: important to have S-SW orientation + limit obstruction by neighbouring objects
- Use of OWN gateways ensures stable connection for data transmission via LoRa = limits loss of packages!
- Preliminary results based on <u>limited data</u>:
 - Medium to High correlation with reference rainfall measurements
 - Clear underestimation of absolute values
 - Peak rainfall identification not reliable at the moment


OUTLOOK: EXTEND DATA ANALYSIS on MORE DATA!

PROJECT

FloodCitiSense

Early warning service for urban pluvial floods for and by citizens and city authorities

CITIZENS "victims" > "actors"

CONSORTIUM

Website: floodcitisense.eu

Contact: info@floodcitisense.eu

Contribute by:

TESTING the **REPORTING** app in your city

REPORTING RAIN & IMPACTS

- 1. Download & install FloodCitiSense App @ Playstore/Appstore
- 2. Fill App feedback form while you are testing

TESTING the LOW-COST RAINSENSOR

Interested? Contact us! eveenhoven@disdrometrics.com

