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Abstract
The knowledge of global precipitation is of crucial importance to the study of

climate dynamics and the global water cycle in general [8]. Although global
precipitation climatologies have existed for some time, and their understanding
has improved dramatically due to the vast amount of different data sources, their
information has not been comprehensive enough due to precipitation spatial-
temporal variability. Thus, ground station reports are, in some cases, not
representative of the surrounding areas. Remote sensing data and model
simulations complemented the traditional surface measurements and offered
unprecedented coverage on a global scale. It is important to note that satellite
data records are now of sufficient time frame lengths and with methods
“mature” enough to develop meaningful precipitation climatologies that are able
to provide information on precipitation patterns and intensities on a global scale.
While data (and in some cases exploration/visualization tools as well) are widely
available, each dataset comes with different spatial resolution, temporal
resolution, and biases.

Consequently, this unique opportunity to obtain a robust quantification of global
precipitation has been hindered by the uncertainty, already revealed in the first
attempts of the unification of different data products. Herein, we present a multi-
source quantification of global precipitation, focusing on the description of the
underlying uncertainties. Our approach combines station (CRU, GHCN-M, PRECL,
UDEL, and CPC Global), remote sensing (PERSIANN, PERSIANN-CCS, PERSIANN-
CDR, GPCP, GPCP_PEN_v2.2, CMAP, and CPC-Global) and reanalysis (NCEP1,
NCEP2, and 20CRv2) data products, providing an updated overview of the role of
precipitation in global water cycle.
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CRU 0.5ºx0.5º Monthly 1901-2018 [5]

GHCN-N 5ºx5º Monthly 1900-2015 [10]

PRECL 0.5ºx0.5º Monthly 1948-2020 [3]

UDEL 0.5ºx0.5º Monthly 1900-2017 [12]

CPC Global 0.5ºx0.5º Daily 1979-2020 [15]

PERSIANN-CCS 0.04ºx0.04º Monthly 2003-2020 [11]

PERSIANN CDR 0.25ºx0.25º Monthly 1983-2020 [2]

GPCP 2.5ºx2.5º Monthly 1979-2020 [1]

GPCP_PEN_v2.2 2.5ºx2.5º 5 Days 1979-2017 [14]

CMAP 2.5ºx2.5º Monthly 1979-2020 [13, 14]

CPC-Global 0.5ºx0.5º Daily 1979-2020 [15]

NCEP1 T62 Monthly 1948-2020 [6]

NCEP2 T62 Monthly 1979-2020 [7]

20CRv2 1ºx1º Monthly 1836-2015 [4]
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Methods

• Capture: To download the different data sets. As previously mentioned
and evidenced by the above table, each data set comes with different
spatiotemporal resolutions. Furthermore, each data provider has its
storage and naming systems, thus, adding different file formats into the
mix as well.

• Re-scale: To transform the individual data sets into a common
spatiotemporal resolution because we do need all the data to be in the
same spatiotemporal resolution before we move on [9]. In addition, we
have to guarantee that any alteration of the spatiotemporal resolution
will have a minor impact on the statistical properties of the original data.

• Merge: To combine the re-scaled data sets into a single one by means of
a weighted average. The weight of a given data set will be inversely
proportional to its difference to the mean of all data sets. Basic unbiasing
will tackle the time periods in which not all data sets overlap at the same
time (e.g. Despite CRU and CPC-Global having a similar spatiotemporal
resolution, CRU data record starts in 1901, whereas CPC-Global record
starts in 1979).

• Quantify: To this point we would have produced a single data set to be
used in the quantification of precipitation in the global water cycle, and
with these global time series we will be able to analyze the climatology of
global precipitation.

A necessary component of the estimation of precipitation in the global
water cycle is uncertainty quantification and validation analysis. Through
the above steps we will keep track of the errors, their propagation, and
possible creation by our processing. Several statistical metrics like RMSE,
FAR, and correlation coefficient to mention some of them, will be adopted
to quantify uncertainty and validate different data sets among themselves
as well as versus the new data set generated by the merge.


