Basal Seisimicity Forced by Surface Water Supply on a Stepped-Bed Glacier: Saskatchewan Glacier, Alberta, Canada

May 4. 2020 EGU2020-10952: Session CR2.1

Department of Geosciences, University of Wisconsin – Madison, WI, USA

^{onsin –} Nathan T. Stevens^{1*}, Collin J. Roland¹, Univ Dougal D. Hansen¹, Emily Schwans², Lucas K. Zoet¹

Department of Geosciences, Penn State University, University Park, PA, USA

Acknowledgments

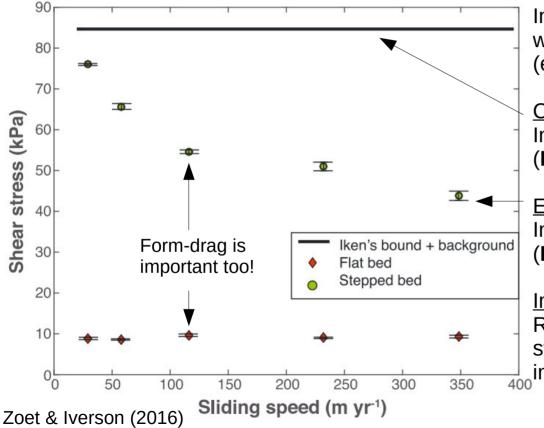
<u>Funding</u>: WARF Fall Research Competition Award, 2019 University of Wisconsin – Madison, Department of Geoscience NSF-PLR 1738913 Penn State Evan Pugh Research Endowment

<u>Research Permission</u>: Parks Canada – Research Permit 38645

Instrumentation: IRIS/PASSCAL GEOICE

The Field Team!

E Schwans


C Roland

D Hansen

Wisconsin Alumni Research Foundation

Photos are the work of N.T. Stevens unless otherwise stated

Experimental & Numerical Sliding Theory: Stepped Beds with Water Filled Cavities

Increasing bed water pressure has a similar effect on water-filled cavities as increasing sliding velocity (e.g., Iverson, 1991; Hooke, 1991)

<u>Classic Theory (Iken, 1981):</u> Increasing V (or P) doesn't change drag from the bed (**Rate Neutral Sliding**)

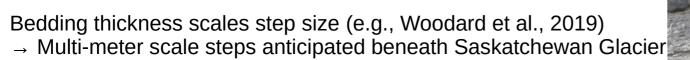
Experimental Results (Zoet & Iverson, 2016): Increasing V (or P) decreases drag from the bed (Rate Weakening Sliding)

Importance:

Rate weakening sliding laws tend to decrease the stability of glaciers (e.g., Schoof, 2005) and greatly impact forecasts of sea-level rise.

Saskatchewan Glacier A Natural Laboratory

Saskatchewan Glacier Tributary (~50 m above site)



Multi-Tool

Photo Credit: L. Zoet

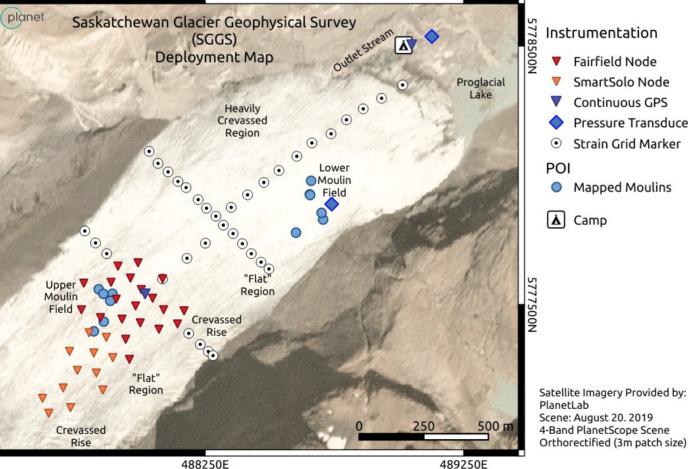
In the Literature: Cathedral Fm: 1-12 m bedding (above) Pika Fm: 0.1-0.5 m bedding (below) (Ford, 1983)

Castlegaurd Glacier Forefield (3 km from site)

U.Camb Ordovician

Cathedral Fm upper member

Cathedral Fm


Eldon & Pika Fm

Stephen Fm

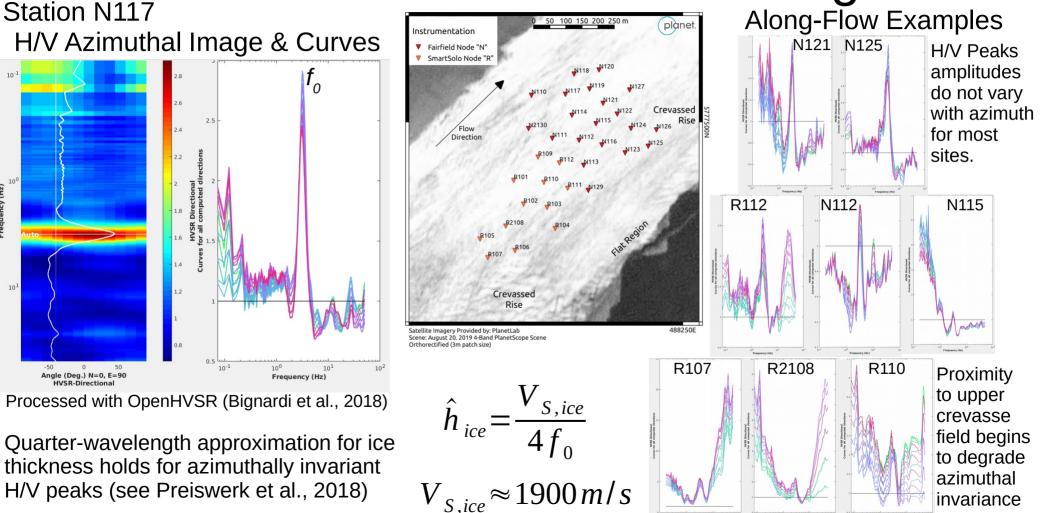
æ

un ntai

Geophysical Survey Components

Instrumentation

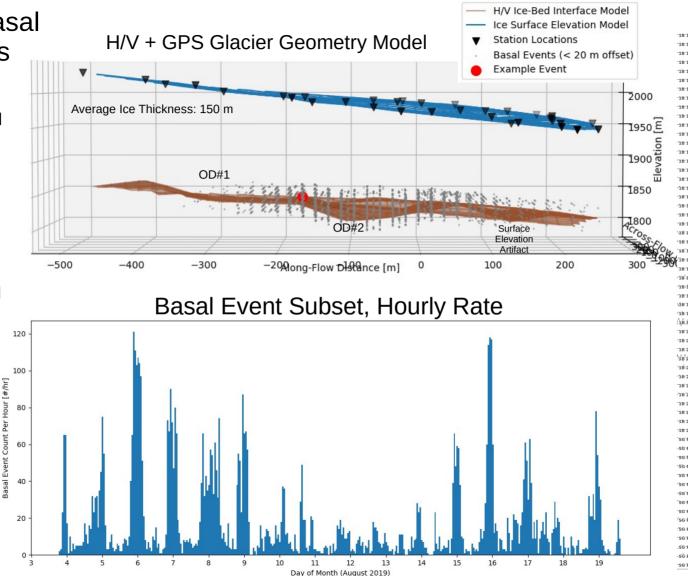
- Fairfield Node
- SmartSolo Node
- Continuous GPS
- Pressure Transducer Strain Grid Marker
- POI
 - Mapped Moulins
- Å Camp


- Passive Seismic Monitoring: 32 Instruments
- Active Source Shots: 4000+ hammer blows
- Refraction & Zero-**Offset Surveys**
- Continuous GPS
- Continuous Weather
- Continuous Stream & Moulin Stage
- Ablation & Strain Grid: 3-4 day repeat surveys

Event Detection & Location Workflow

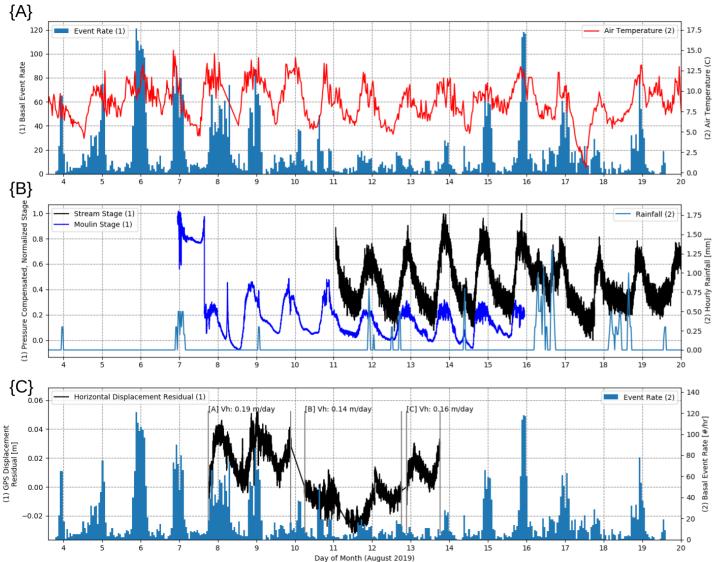
- Pre-processing: 80 430 Hz Bandpass
- Detection: Moving window kurtosis CRF + noise adaptive detection threshold on vertical channels. (McBrearty et al., 2020 + Carmichael et al., 2015).
- Association: network coincidence trigger in ObsPy (Kirscher et al., 2015)
- Phase picking: adaptation of P-detection routine from Akazawa (2004) for P- & S-phases.
- Event location: NonLinLoc (Lomax et al., 2000). Ice-only velocity model.
 - Events with #data ≥ 20
 - V_P : 3.7 km/s, from refraction survey
 - V_P/V_S : 1.95, e.g., Smith et al. (2015)

H/V Ice Thickness Modelling



Bed Model & Basal **Seismicity Rates**

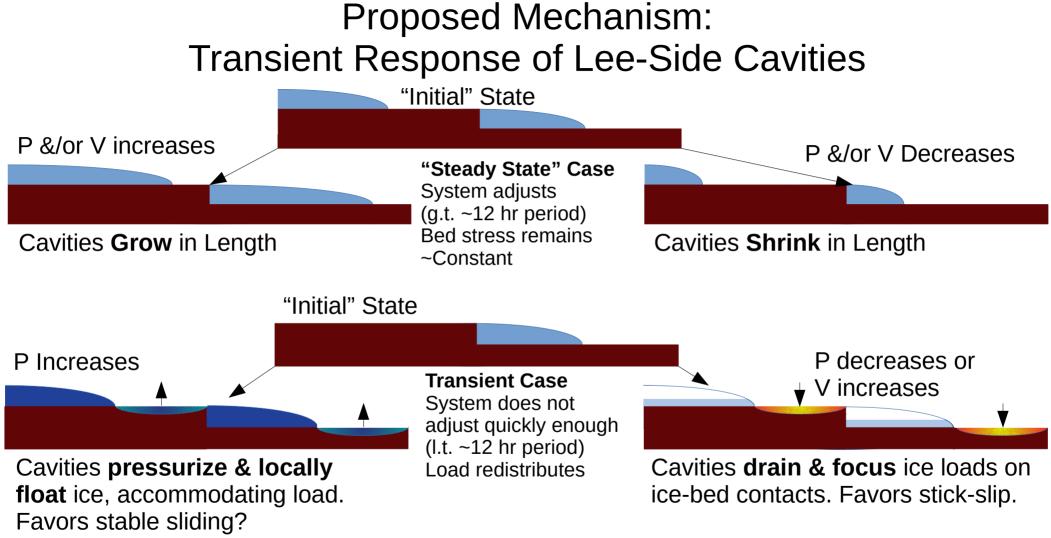
Ice-bed interface model suggests 2x overdeepenings (OD), ~200m in length and 30-50m in relief.


6616 of 92277 preliminary event locations within 20m of ice-bed interface model

Event rate shows a strong diurnal signal.

Example Basal Event Near OD#2 Headwall

	ivear	UD#Z	пеаи	vali
18 1111	GP1~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~
18 1111			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-18-1111			· · · · · · · · · · · · · · · · · · ·	
-1B 1112				~~~~~
1B-1112			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~
-1B-1112			· · · ·	
18 1113		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~
18 1113			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
18 1113		W^		
18-1115				~~~~~
18 1115			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~
18 1115			Δ	
18-1117			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~
18 1117		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~
18 1117				
18 1118		ViV		A
18 1118				~~~~~
18 1118			www.	~~~~
18 1119				
18-1119		All the	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
18 1119				
1B 1120				
			A .A	~~~~~~
18 1120 18 1121		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
				~~~~
18-1121 18-1121				~~~~
18 1121		0.0.0.000000000000000000000000000000000	~~~~~~~~~	
		0000.0000		
'18 1122 '18 1122			AASASSAS	~~~~^
1B 1122		and the second	AAAAAAAA	
18 1123		man mar hull-n		
18 1123		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14444	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
18 2114		mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-18 2114				
18 2114		- Ahm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
18/2116		mm	mmm	m
18 2116		myhm	www.	m
18 2116		-www.		
18 2129		min	mm	~~~~
/18/2129		mm	mm	mm
-18-2129			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
18 2130		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		m
18 2130		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	min	$\sim\sim$
-18 2130		www.ww		~~~~
SG R101	10 GN1		$\sim\sim\sim\sim$	$\sim$
-5G R101		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	rinn	~~~~
-SG R101		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	
SG R102		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	iiin	~~~~
SG R102	10 GN2	$\sim\sim\sim$		~~~
SG R102		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-SG R103		minp	www.	
SG-R103	10'GN2~/~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www	$\sim\sim\sim\sim$
SG R103	10 GNZ	W	······	~~~~~
/SG/R104	10 GN1		www.w	$\sim\sim\sim\sim$
/SG-R104	10 GN2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~
'SG'R104	10 GNZ		Mun	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SG R105	10.GN1/~~~	www	$\sim\sim\sim\sim$	$\sim \sim$
-SG R105	10.6N7	win	$\sim \sim $	$\mathbb{N}$
SG R105	10 GNZ			·····
	.900	.950	.000	.050
Aug 06,			00:55:57	
Mug 06,	2013			




#### Forcing Characterization

Peak seismic rates:

- Lag peak air temperature by 1-4 hrs {A}
- Lag peak stream & moulin stage by 1-4 hrs {B}
- Coincide with with rain events {B}
- Trail greatest surface velocity acceleration by 1-4 hrs {C}

Seismic quiescence coincides with multi-day falling air temperatures, stage, and displacement residuals. {A,B}



The short time-scale (0-8 hr) of changes in water delivery to the bed of Saskatchewan Glacier corresponds with rapid changes in the rates of basal seismicity, favoring transient processes.

# Conclusions

- Abundant seismicity at the bed of Saskatchewan Glacier indicates rateweakening phenomena on hard, stepshaped beds in a natural setting.
- Rates of seismicity are strongly correlated to diurnal melt water supply, trailing peak subglacial throughput and accelerated glacier motion.
- These observations support consideration of transient, rate-weakening sliding relationships for stepped beds.



# Questions?

- Corresponding author
  - E-mail: ntstevens@wisc.edu
  - Twitter: @nt_stevens
    - Plus:
      - @lzoet (LZ)
      - @WaterAndHazards (CJR)
      - @schwantarctic (ES)



## References

- Akazawa, T. (2004). A Technique for Automatic Detection of Onset Time of P- and S-Phases in Strong Motion Records. *13 Th World Conference on Earthquake Engineering*, (786), 786.
- Bignardi, S., Yezzi, A. J., Fiussello, S., & Comelli, A. (2018). OpenHVSR Processing toolkit : Enhanced HVSR processing of distributed microtremor measurements and spatial variation of their informative content. *Computers and Geosciences*, *120*(July), 10–20. https://doi.org/10.1016/j.cageo.2018.07.006
- Carmichael, J. D., Joughin, I., Behn, M. D., Das, S., King, M. A., Stevens, L., & Lizarralde, D. (2015). Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins. *Journal of Geophysical Research: Earth Surface*, *120*, 1082–1106. https://doi.org/10.1002/2014JF003398
- Ford, D. C. (1983). The Physiography of the Castleguard Karst and Columbia Icefields Area , Alberta , Canada. Arctic and Alpine Research, 15(4), 427-436.
- Hooke, R. L. (1991). Positive feedbacks associated with erosion of glacial cirques and overdeepenings. *Geological Society Of America Bulletin*, 103(August), 1104–1108. https://doi.org/10.1130/0016-7606(1991)103<1104
- Iken, A. (1981). The Effect of the Subglacial Water Pressure on the Sliding of a Glacier in an Idealized Numerical Model. Journal of Glaciology, 27(97).
- Iverson, N. R. (1991). Potential effects of subglacial water-pressure fluctuations on quarrying. Journal of Glaciology, 37(125), 27–36. https://doi.org/10.3189/s0022143000042763
- Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: A bridge for seismology into the scientific Python ecosystem. *Computational Science and Discovery*, 8(1). https://doi.org/10.1088/1749-4699/8/1/014003
- Mcbrearty, I. W., Zoet, L. K., & Anandakrishnan, S. (2020). Seismicity of the Northeast Greenland Ice Stream. Journal of Glaciology, 1–17.
- Preiswerk, L. E., Michel, C., Walter, F., & Fäh, D. (2018). Effects of geometry on the seismic wavefield of Alpine glaciers. *Annals of Glaciology*, 1–13. https://doi.org/10.1017/aog.2018.27
- Schoof, C. (2005). The effect of cavitation on glacier sliding. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 461(2055), 609–627. https://doi.org/10.1098/rspa.2004.1350
- Smith, E. C., Smith, A. M., White, R. S., Brisbourne, A. M., & Pritchard, H. D. (2015). Mapping the ice-bed interface characteristics of Rutford Ice Stream, West Antarctica, using microseismicity. Journal of Geophysical Research F: Earth Surface, 120(9), 1881–1894. https://doi.org/10.1002/2015JF003587
- Woodard, J. B., Zoet, L. K., Iverson, N. R., & Helanow, C. (2019). Linking bedrock discontinuities to glacial quarrying. Annals of Glaciology, 1–7. https://doi.org/https://doi.org/10.1017/ aog.2019.36

Zoet, L. K., & Iverson, N. R. (2016). Rate-weakening drag during glacier sliding. *Journal of Geophysical Research: Earth Surface*, *121*, 1328–1350. https://doi.org/10.1002/2016JF003909