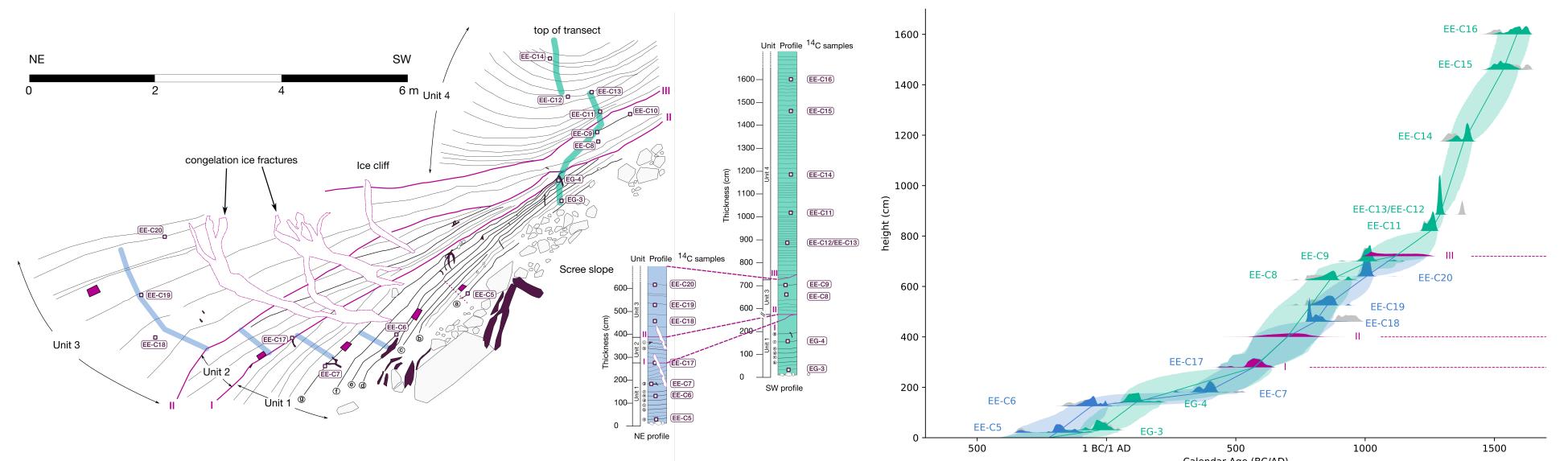
Establishing past firn accumulation records from ice caves of the European Alps

Tanguy Racine¹, Christoph Spötl¹, Paula Reimer²

¹Institute of Geology, University of Innsbruck,²Centre for Climate, the Environment and Chronology, Queen's University, Belfast.

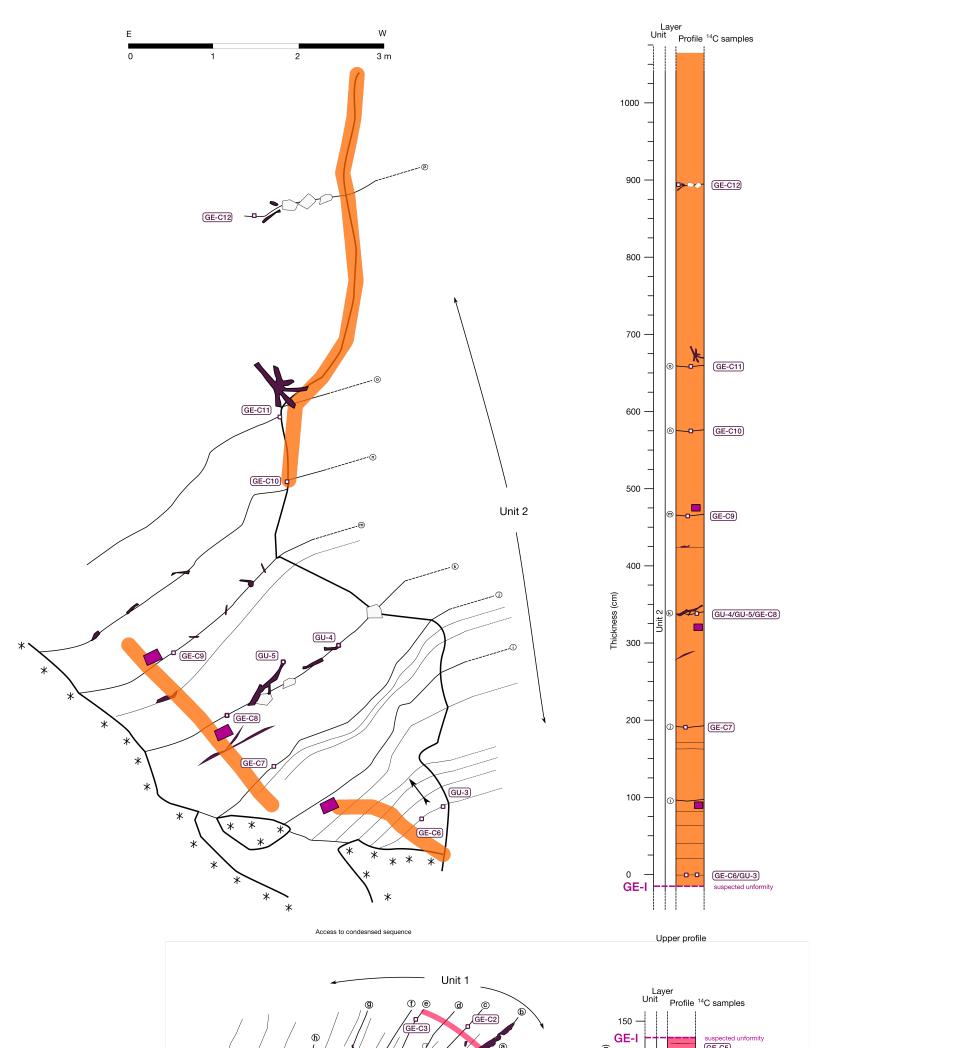

Background

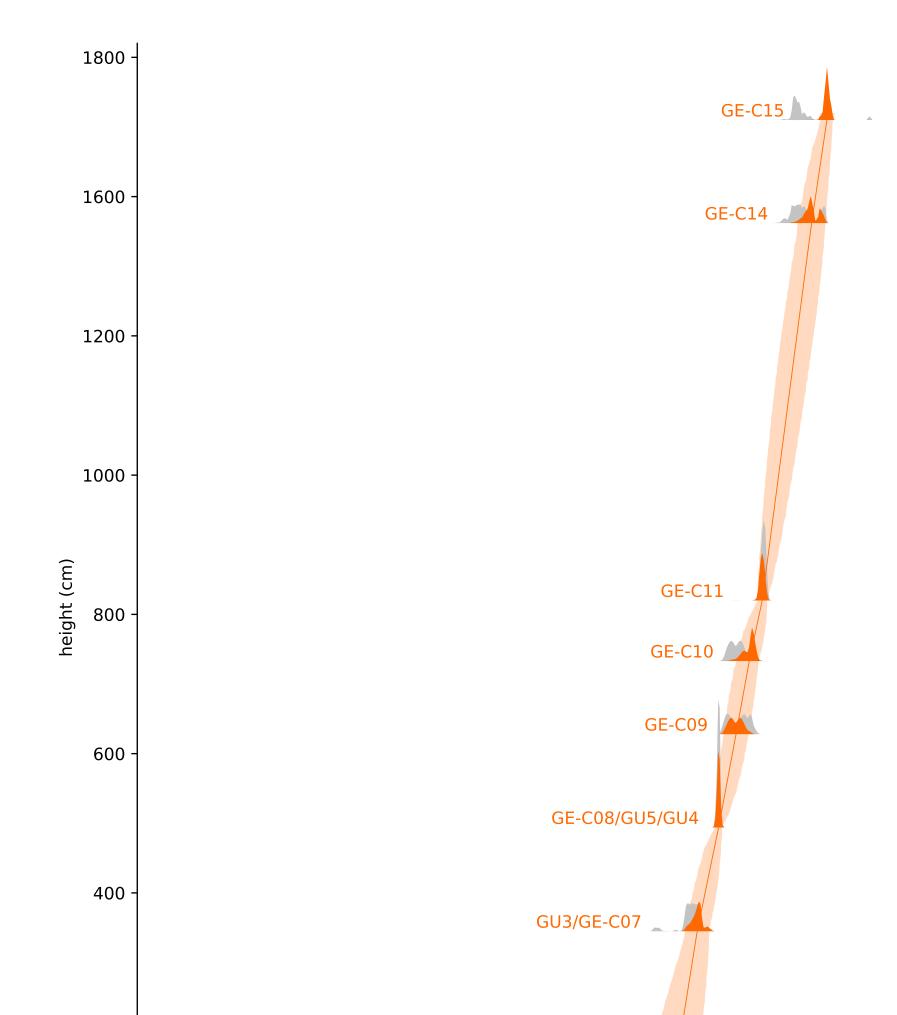
Ice caves are rock-hosted caves containing perennial ice. In many sag-type caves, winter snow accummulations accounting for several 100 m³ are preserved underground in the form of firn. Ice in such caves is a proven climate archive (Stoffel et al., 2009; Munroe et al., 2018; Sancho et al., 2018) which can provide complementary insights in climate of the last 2 ka.

Objective

Establish radiometrically dated records of ice accumulation in alpine caves

Stratigraphy and Age models




Calendar Age (BC/AD)

Left: Sketch of the stratigraphic section at Eisgruben ice-cave. Right: Age/depth models of the highlighted transects, with their 95% confidence envelope. For each sample, likelihood (grey) and posterior (colour) probability density functions are also displayed

Study Sites

Site	Region	Elevation
Großer Naturschac	cht (GN) Carinthia, Dob	ratsch 1985 m
Eisgruben ice cave	e (EE) Upper Austria,	Sarstein 1720 m
Guffert ice cave (G	E) Tyrol, Rofan	1805 m
Großer Naturschacht	Guffert Eisschacht	Eisgruben Eishöhle

Elevation profiles of the caves, height/width ratio 1:1

Left: Sketch section of the ice stratigaphy at Guffert ice-cave. Right: Age/depth models of the highlighted transects, with their 95% confidence envelope. For each sample, likelihood (grey) and posterior (colour) probability density functions are also displayed

Materials & Methods

 \rightarrow Woody macrofossils (e.g. twigs) were sampled from the ice stratigraphy. Detailed stratigraphic logs, supplemented by annotated ice exposure sketches allow reconstruction of different deposition sequences.

 \rightarrow Stratigraphic position of samples was recorded by laser-distance metre where possible, scaled photographs and measuring tape.

 \rightarrow Wood samples were dated using radiocarbon AMS at the CHRONO Centre, Queen's University (Belfast,NI) and radiometric ages were calibrated against the Int-Cal13 curve (Reimer et al., 2013). Wherever possible, an age/depth model was produced with Oxcal (Ramsey, 2009), treating the ice deposition as Poisson process.

Main Observations

Eisgruben ice cave exhibits the most complete picture of accumulation phases, interrupted by at least 3 major unconformities (I,II,III). Organic layers conformable to the firn/ice strata are younging upwards. The frequency of organic-rich layers decreases dramatically above unconformity **III**.

Guffert ice cave contains a condensed ice sequence at the base, separated from a thick firn/ice sequence of younger age. A 600 yr hiatus between the two sequences is apparent. At the surface of the cave, 18th Century ice is exposed. We speculate that the upper part of the cave filled up during the late Little Ice Age, but that ice is now lost..

At Großer Naturschacht, the dated wood samples sug-

Key Results

Three broad ice accumulation periods in the past 2 ka are discerned in the ice cave record.

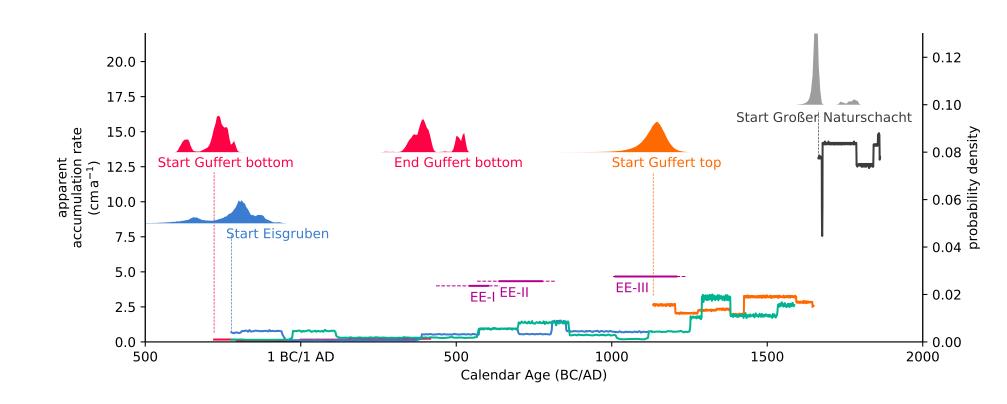
(1) 250 BC-500 AD, with apparent accumulation rates $< 1 \,\mathrm{cm}\,\mathrm{a}^{-1}$.

(2) 700-1000 AD only seen at Eisgruben (this study), between unconformities [,]] and []]. and Hundalm Eishöhle (Spötl et al., 2014).

(3) 1150-1850 AD exhibited in all three caves, with relatively high rates of accumulation generally > 3 cm a^{-1} , and up to 13 cm a^{-1} at Großer Naturschacht. Ice deposited during period 3 (broadly coincident with the Little Ice Age) constitutes the greater portion of ice in alpine caves. At Eisgruben and Guffert, no ice deposited post 1600-1700 is preserved. This is likely due to (1) the lack of accommodation space as well as (2) widespread ice loss.

References

Munroe, J. S., O'Keefe, S. S., and Gorin, A. L. (2018). Chronology, stable isotopes, and glaciochemistry of perennial ice in Strickler Cavern, Idaho, USA. GSA Bulletin, 130(1-2):175–192. Ramsey, C. B. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1):337–360. Ramsey, C. B. (2017). Methods for summarizing radiocarbon datasets. *Radiocarbon*, 59(6):1809–1833.


Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., and et al. (2013). IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon, 55(04):1869–1887.

Sancho, C., Belmonte, Á., Bartolomé, M., Moreno, A., Leunda, M., and López-Martínez, J. (2018). Middle-to-late Holocene palaeoenvironmental reconstruction from the A294 ice-cave record (Central Pyrenees, northern Spain). Earth and Planetary Science Letters, 484:135–144.

Spötl, C., Reimer, P. J., and Luetscher, M. (2014). Long-term mass balance of perennial firn and ice in an Alpine cave (Austria): Constraints from radiocarbon-dated wood fragments. The Holocene, 24(2):165-175.

Stoffel, M., Luetscher, M., Bollschweiler, M., and Schlatter, F. (2009). Evidence of NAO control on subsurface ice accumulation in a 1200 yr old cave-ice sequence, St. Livres ice cave, Switzerland. Quaternary Research, 72(1):16–26.

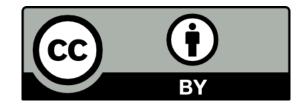
gest that the oldest ice currently accessible is younger than **300 yr** old. Not all samples are in stratigraphic order and the lower section likely represents a more recent remobilisation of firn by melting and refreezing.

Summary of accumulation record from the Eisgruben^a, Guffert^a and Großer Naturschacht^b ice-caves. ^a Apparent accumulation rate calculated from the respective age models. ^b Kernel density estimate of the ice building phase (Ramsey, 2017)

Perspectives

This study highlights the potential of sag-type ice caves as archives of past winter precipitation. Major hiatuses will need to be replicated in other alpine caves and the established ice-cave records will be compared to and contrasted with constituents of the cryosphere.

INNSBRUCK


RESEARCH

GROUP

QUATERNARY

universität innsbruck

