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H. Poincaré & the Topology of Chaos
Deterministic chaos theory starts with Henri Poincaré’s 
study of the stability of the Solar System and the three-
body problem (e.g., Méthodes nouvelles de la 
Mécanique céleste, vols. I–III, 1892–1899). He also 
clearly stated that weather was similarly affected by 
sensitive dependence on initial conditions (Science et 
Méthode, 1912, p. 69).

Poincaré also built on a few earlier results of Riemann, 
Betti & Jordan to create the field of algebraic topology,  

by introducing homology groups into
what he called analysis situs (J. Éc. 
Poly., 1, 1–121).

The work described herein will 
combine these two strands 
of Poincaré’s heritage. 



What is topology?
• Topology studies the properties of objects that remain unaltered by 

continuous transformations.
• Detects properties that cannot be seen by geometry.
• Two objects are topologically equivalent if there is a continuous 

deformation from the one to the other (homeomorphism).

• It allows one to describe the connectivity of the object under study.

A donut and a coffee mug are topologically equivalent ( Kinsey, 1993).



Algebraic topology – I
• Search for something computable to identify topological properties.
• Allows  to turn a topological problem into an algebraic problem.
• Homology : seeks to make a distinction between topological spaces    

by determining the number of nonequivalent n-holes they contain. 
What is an n-hole?

• Oriented cell complex: simplified structure      “Connectivity map of 
the cylinder”



Algebraic topology – II

Types of holes

0- holes        vertices      

1- holes        cycles that are not the                  
boundary of any 2-cells   

2 - holes        cavities enclosed   

N - holes        hypercavities

1 - hole?     YES! NO!

• Are we interested in all the n-holes? NO, we are interested only in the 
nonequivalent holes.

• Two holes are topologically equivalent if there is a smooth deformation 
from one hole to the other. 



Algebraic topology – III
• 1- holes

• 2- holes

one nonequiv. 1-hole two nonequiv. 1-holes

• How do we compute the nonequivalent n-holes? Recall that we are 
interested only in the nonequivalent holes.

• Homology groups Hn: identify the nonequivalent n-holes in the complex.
• Notation: k nonequivalent n-holes Hn ~ ℤk



Algebraic topology – IV
Homology groups Hn: identify the k nonequivalent n-dimensional 
holes in the complex.

one  connected component

one  nonequiv. 1-D hole

No  cavities enclosed

one  connected component

two nonequiv 1-D holes

one cavity enclosed



Algebraic topology – V
• How about a standard strip (cylinder) and a Moebius strip?

No torsion   Torsion!

Torsion

cell complexcell complex

Orientability chains: allow one to identify torsions in an oriented cell complex.



Chaos topology – I
• It considers the problem of how n-dimensional trajectories or 

point-clouds are topologically structured in state space.

Relaxation oscillations in an optically pumped molecular laser (Gilmore,1998).

Time series x(t) Embedding projection                                                        
onto a plane.

Simplified structure 
of the flow.

Branched 
manifold! 

Reconstruction of the state space by  
(x(t), x(t-τ), x(t-2τ)) delay embedding

Holes!

Use 
topology to 
understand 
the flow 
dynamics.



Chaos topology – II
• The dynamics on a deterministic attractor can be compactly described 

as the limit of a semi-flow on a branched manifold (BM).
• The topological description of the BM encodes the invariant structure of 

the attractor in phase space.
• BM describes the topological organization of the trajectory on an 

attractor.

Branched 
manifold (BM)

Strange 
attractor

Topological description of the attractor ~ Topological description of the BM

Reconstructing a BM from data amounts to:
(i) approximating a cloud of points in phase space by Euclidean closed sets;
(ii) forming a cell complex; and  (iii) identifying the BM through the homology 
groups and torsions associated with the cell complex.



BraMAH method 
BraMAH method: Branched Manifold Analysis through Homologies 
(Sciamarella & Mindlin,1999)

1. Decomposition into patches in Rn. A patch
is a set of points {xi} around an arbitrary 
point  x0 that  is locally a linear  
approximation.

2. Construct a cell complex keeping track of 
the gluing prescriptions.

3. Compute homologies, and torsions of the 
cell complex.



Application: Random attractors
• And how about some “real stuff” now: chaotic + random?

• To address truly coupled climate–human behavior and climate 
change an important step is to examine time-dependent forcing.

• The proper framework for doing so is the theory of non-autonomous 
and random dynamical systems (NDS and RDS).

• Motivation: "A day in the life of the Lorenz (1963) model’s random 
attractor, or LORA for short; see SI in Chekroun, Simonnet & Ghil
(2011, Physica D) or Vimeo movie: https://vimeo.com/240039610." 

LORA evolves in time. Does this evolution include 
changes in the topological sense?



LOrenz Random Attractor (LORA)

Stochastically perturbed Lorenz (1963) model.

r = 28, s = 10, and b = 
8/3, the usual values for 
the deterministically 
chaotic strange attractor.

In the system of nonlinear stochastic differential equations (SDEs) above, 
Wt = W(t) is a Wiener process, and dW is Brownian motion. The noise is 
called  multiplicative, because dW is multiplied by x, y or z. 

Chekroun, Simonnet & Ghil (Physica D, 2011)



LORA 

LORA snapshot. The figure corresponds to 
projection onto the (y,z)-plane of the 
sample measure μ (in yellow), cf. Chekroun
et al. (Physica D, 2011).  
One billion of initial particles are used.

• The point cloud is obtained for a fixed 
realization ω of the noise, and it is associated 
with a particular time instant, t = t0.

• To construct a random attractor a lot of 
initial particles are used.

• Each point within the cloud can be 
associated to a μ-value, with low μ-values 
corresponding to the less populated regions 
of the random attractor,
i.e., lower probability density function (pdf).

LORA is a random attractor in R3



The topology of LORA – I

• We describe the temporal evolution of the topological structure of the 
branched manifold (BM) associated with LORA.

• In order to study the changes in LORA's topological structure, 
BraMAH is extended from deterministically chaotic flows to 
nonlinear noise-driven systems.

• While the attractor associated with the classical, deterministic Lorenz (1963)  
model is “strange" but fixed in time, the Lorenz model’s attractor (LORA), 
driven by multiplicative noise, is a random attractor that changes in time.



The topology of LORA – II
We are interested in characterizing the topology of the most populated 
regions of the point cloud, and in order to do this, we select a threshold in 
the μ-value. This value is chosen in order to guarantee the convergence of 
the point cloud's topology. 

LORA at t = 40.09 (red), 
10 000 initial particles

The point cloud after the 
application of the threshold (blue)



The topology of LORA – III



The topology of LORA – IV
Conclusion
LORA is a 2-dimensional branched manifold whose number of 1-D 
holes changes over time, i.e., its homology group H1 is distinct from 
the fixed one of Lorenz’s “butterfly” and cycles are created or 
destroyed by the noise. 

Work in progress
• When the amount of initial points is increased, small features 

(more holes) could appear. The definition of the structure
is increased to an “HD LORA.” We are studying how this 
finer structure is captured by other “paths” in the attractor, 
yielding a “sub-branched manifold”.

• We study changes of the homology groups as the variance
σ of the noise is modified.
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