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Introduction (1)
• CP-RCMs are state of the art, but they have one drawback. They are 

quite expensive! Typical simulations are only O(10) years

• Therefore internal variability (INT) plays a role in these ‘short’ 
simulations and influences the derived climate-change signal. The 
question is, to what extent? E.g. what is INT at e.g. 10-year time scale 
when you have only one 10-year simulation?

• Reducing effect of internal variability in cc signal. Options: 
– Long separation between REF & FUT periods & scaling
– Aggregation and/or spatial pooling
– Try to compute amplitude of INT <= The aim of today’s presentation



Introduction (2)
• Estimate the amplitude of internal variability 

(INT) at various time scales

• Ideally, the approach can be used with a single 
member, and converges to the ‘truth’ as more 
and more members are added

• Ideally, the method is compatible with the time-
slice approach of the CP-RCM



Introduction (3)
• Data: 16-member ensemble of  

1950-2100 GCM/RCM 
simulations obtained with EC-
Earth/RACMO (certain decades 
of certain members have been 
downscaled with the CP-RCM 
HCLIM-AROME)

• Domains. EUCP WP2 domains 
(Brunner et al 2020)
– SREX: MED, CEU, NEU
– Individual 2.5deg grids

Sampling internal variability from a large ensemble
obtained with a single global climate model (KNMI)

Hylke de Vries, Geert Lenderink

version 2.1
June 25, 2019

One of the deliverables of WP2 in EUCP is to develop methods that constrain (multi-model) pdfs of
relevant climate variables under climate change. Identification of and accounting for internal variability
could be one such method. Here we assess the role of the spatial aggregation scale in the amplitude of the
internal variability present in the climate change signal for summer temperature and precipitation over
Europe. We use a large single-model ensemble (16 members that only differ in their initial condition) of
climate simulations obtained with the GCM EC-Earth.

1 Introduction

Figure 1: Analysis grid and the three SREX re-
gions (NEU, CEU and MED, a land-sea mask
has been applied) and the location of the special
points in orange.)

Internal variability in the climate system is one of
the factors that limits the determination of trends
and the attribution of extreme events in a world that
is warming due to anthropogenic effects. The am-
plitude of the internal variability depends strongly
on the variable of interest and on the spatial and
temporal aggregation scale. Here we assess the role
of the spatial aggregation scale in the amplitude of
the internal variability present in the climate change
signal for summer (JJA) temperature and precipita-
tion over Europe. Three levels of spatial aggrega-
tion are considered (Fig. 1): European: Land area of
the three SREX-regions NEU, CEU and MED com-
bined. Regional: Land area of the above SREX-
regions separately. Local: Specific locations. For
each of the domains, we explore a number of meth-
ods to identify the internal variability (see next sec-
tion). Typical research questions are: 1) How sen-
sitive are the results to the method? 2) What is the
added value of having a large ensemble? In other
words, how well can we estimate the internal vari-
ability from a single realisation? 3) To what extent does the ‘true’ mean fall within the natural
variability estimated from a single member, and in what way can this information help us in multi-
model analyses? and finally 4) Do the results depend on the level of spatial aggregation?

2 Data and method
We use data from a large single-model ensemble (16 members that only differ in their initial con-
dition) of climate simulations obtained with the GCM EC-Earth. Temperature and precipitation
fields have first been interpolated to a 2.5x2.5 degree regular longitude latitude grid using con-
servative remapping. As part of Tier 1 (spring 2019), only two 20-year periods are considered: a
reference period (1995-2014) and a mid-of-century period (MOC, 2041-2061). For completeness we
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• INT = ensemble spread at different time scales 
• For time scale n in (1,2,..,50):
– Compute sliding n-season averages of precipitation for 

all members and also for the ensemble mean
– Take relative differences w.r.t the forced signal 

Assumption: forced signal = loess(ensmean)
– Compute sd of anoms over all steps (p95-p05 ~ 3.3sd) 

=> The result is a measure of the amplitude of the 
internal variability at that time scale (Q: or would one call 
this twice the internal variability?)

Approach to compute INT
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Example: JJA precip (srex MED)

For plotting: JJA season data is first scaled (units of JJA sd). 
Here computed for only two members (#1 en 2)
Now we can display INT (range of deviations) in a contour plot

Loess 
regression 

MED = SREX Mediterranean



1960 1980 2000 2020 2040 2060 2080 2100

10

20

30

40

50

Central year

Ti
m

e 
sc

al
e 

[y
ea

rs
]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10

20

30

40

50

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
computed as fraction of ensemble mean

Internal variability for different time−scales
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Example: 
DJF precip MED
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T 
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n)The result is obtained using all members: 

INT varies in time, is much larger (red) at 
small time scales than at larger time scales 
(blue)
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Internal variability for different time−scales
 DJF   precip  domain:  SREX[MED]

Use double log-axis for line plot
Þ Almost straight lines(=power law)
Þ Predictable! (“INT as white noise”)

Now use LOG-scales
DJF precip MED
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Other domain
NEU

Other similar sized domain
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Larger domain
EUR

Bigger domain
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Gridbox
MAD

Smaller domain



Can we get away with fewer 
members? (LOCAL)

MADRID

All 16 members

10 members (#1-10)

Short answer: Yes

5 members (#1-5)
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Internal variability for different time−scales
 DJF   precip  domain:  MAD (Madrid, −3.75E, 41.25N)
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Can we get away with fewer 
members? (REGIONAL)

MED

All 16 members

10 members (#1-10)

Short answer: Yes

5 members (#1-5)
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Internal variability for different time−scales
 DJF   precip  domain:  SREX[MED]
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Summary / Pros and cons
• Pros

– Simple method using INT defined from ensemble spread. 
– The amplitude of INT can be predicted from an exponential fit using the 

fastest time scales (These you can estimate also in shorter simulations).
– Makes clear how INT basically scales as random noise (see additional slides).

• Cons
– Shown here are values relative to ensmean. Need to adjust when applying to 

e.g. temperature
– The last step (aggregating over time) removes possible changes of INT over 

time. Only the (contour)-maps can show these
– Assumes that we can determine the “forced signal” in another way (i.e. by 

loess regression). Usually it is the main aim to determine the forced signal, 
and here we assume we have it already.... => Ideally, you would compute the 
internal variability from a pre-industrial control simulation, but then we have 
no clue as to whether variability changes or not..
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SeasonalityMED (REGIONAL)
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DJF MAM

JJA SON

SeasonalityDUS (LOCAL)
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Additional slides



Example: white noise

16 time series of white noise (surrogate for JJA precip for example) – offset for display only

But hey isn’t this all familiar from white noise 
theory?



Example: white noise

• N-sample mean from 
normal distribution 
N(0,1) 

• The N-sample mean is 
distributed again 
normally, as N(0,sd) 

• where sd=1/sqrt(N)

Example here, Nmem=100,Nyear=150



Example: white noise

• N-Sample quantiles from 
normal distribution N(0,1) 

• The N-sample quantile is 
distributed again normally, 
as N(0,sd) 

• But now sd is more 
complex... But still 
proportional to 1/sqrt(N)

• If p is quantile (0...1) then 
sd^2=p(1-p)/f(p)^2, where 
f(p) is the density of that 
quantile given the 
distribution. Example here, Nmem=100,Nyear=1000

P50



Example: white noise

• N-Sample quantiles from 
normal distribution N(0,1) 

• The N-sample quantile is 
distributed normally, as 
N(0,sd) 

• Now sd is more complex... 
But still proportional to 
1/sqrt(N)

• If p is quantile (0...1) then 
sd^2=p(1-p)/f(p)^2, where 
f(p) is the density of that 
quantile given the 
distribution. Example here, Nmem=100,Nyear=1000

P95

Typically sd of sample-q gets broader for higher quantiles



Example: white noise

• The difference of two 
normal distributions is 
again normally 
distributed, with 

• Z = Y – X ~ 
N(my-mx,sx^2+sy^2)

• This implies that our n-
sample measure of 
internal variability (P95-
P05) is also distributed 
normally!

Example here, Nmem=100,Nyear=1000

P95


