Using <u>Dynamic Adaptive Policy Pathways</u> and <u>hydrological modelling</u> to <u>co-create water resource adaptation policies</u> for <u>climate change</u> A practical example for southern Portugal

Institutions:

Funding:

© Authors

All rights reserved

João Pedro NUNES

Luís DIAS, Bruno APARÍCIO, Inês MORAIS, Ana Lúcia FONSECA, Amandine PASTOR, Filipe DUARTE SANTOS

Sciences – University of LISBON – Portugal

Presentation Summary

Co-creating water resource adaptation policies for climate change in southern Portugal

Introduction

Water is a scarce resource in the Algarve, southern Portugal

- Essential for irrigated agriculture (2/3^{rds} use)
- Essential for population and tourism (1/3rd use)
- Current demands are 43% of available resources severe water stress

The climate is dry and is getting drier

- Recurrent droughts already create scarcity and water use conflicts
- Climate change should worsen this problem

What are the best solutions to adapt to drought under current and future climate?

Algarve Climate Change Adaptation Plan

Led by Stakeholders

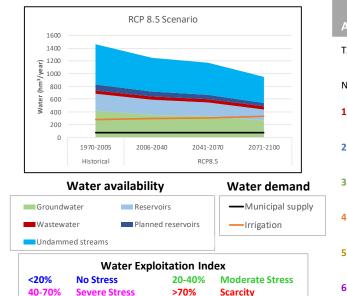
- Funded by local governments
- + water utilities, farmer associations...
- Define the scope of the problem
- Assess the feasibility of solutions

Developed by Researchers

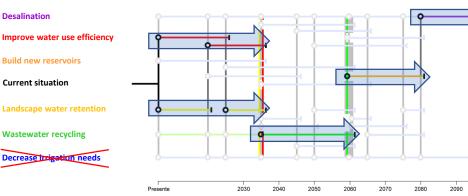
- Climatologists, hydrologists, sociologists... Calculate the potential impacts of climate
- change
- Assess the effectiveness of solutions

Co-created during joint discussions

- Joint assessment of adaptation options
- Adaptation timeline using DAPPs



www.climaaa.com



Climate Change Impacts and Adaptation Options

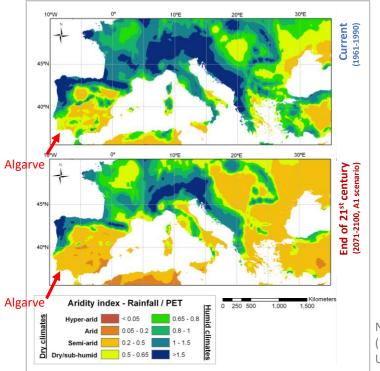
Adaptation solution	Water Exploitation Index in 2100 (RCP 8.5)	Joint assessment by stakeholders and researchers
TARGET	43%	Decided by stakeholders: keep WEI at current levels
None	78%	Water scarcity – not acceptable
1) Improve Water Use Efficiency	74%	Region is already drought aware; irrigation is efficient
2) 1 + Decrease Irrigation Needs	33%	Already tried in the past; not socially acceptable
3) 1 + Wastewater recycling	66%	Not much wastewater to recycle; costly to distribute
4) 3 + Build new reservoirs	60%	The best places for dams already have them
5) 4 + Landscape water retention	Scalable until ~45%	Improve traditional water conservation; many small-scale works
6) Desalination	Scalable until <20%	Costly and energy-intensive now, but this could go down in time

Making an Adaptation Plan with Dynamic Adaptive Policy Pathways

ADAPTATION MEASURES Near future: Improve water use efficiency Landscape water retention Mid-term: Wastewater recycling Long-term: Build new reservoirs If all else fails: Desalination

Do not decrease irrigation needs -> further social debate required

Desalination


Climate change in southern Portugal – the Algarve

- The Algarve is **especially vulnerable** to climate change
 - Climate is already dry; water resources in severe water stress
 - Climate change should significantly worsen these conditions
 - Adapting water resources to these scenarios is a top concern

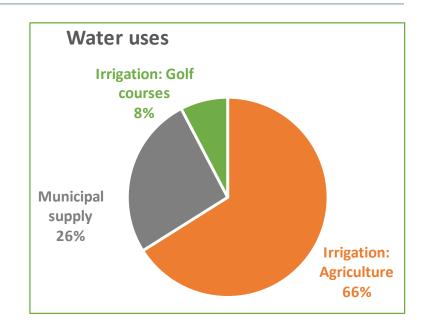
• *Climaaa*: climate change adaptation plan for the Algarve

- Contracted by **AMAL** Algarve Intermunicipal Community
- Multi-stakeholder approach to design an adaptation plan
- Researchers: hydrologists, social scientists
- Local government: politicians, technicians
- Other stakeholders: farmers, water utilities

www.climaaa.com

Nunes 2008 (PhD thesis: NOVA University of Lisbon)

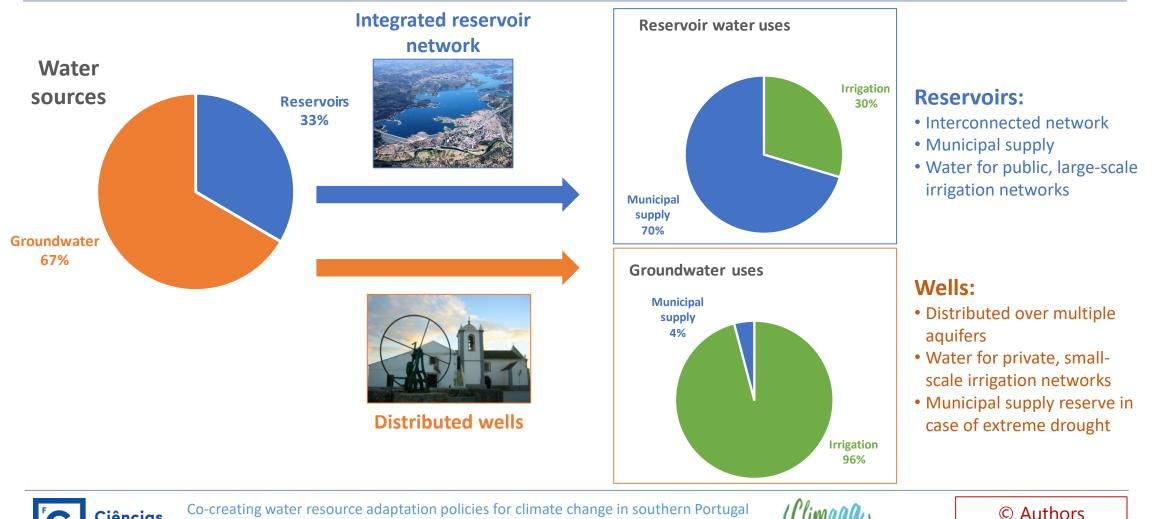
Impacts of climate change on climatic aridity in southern Europe Top: present day Bottom: end of 21st century


Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro NUNES: jpcnunes@fc.ul.pt

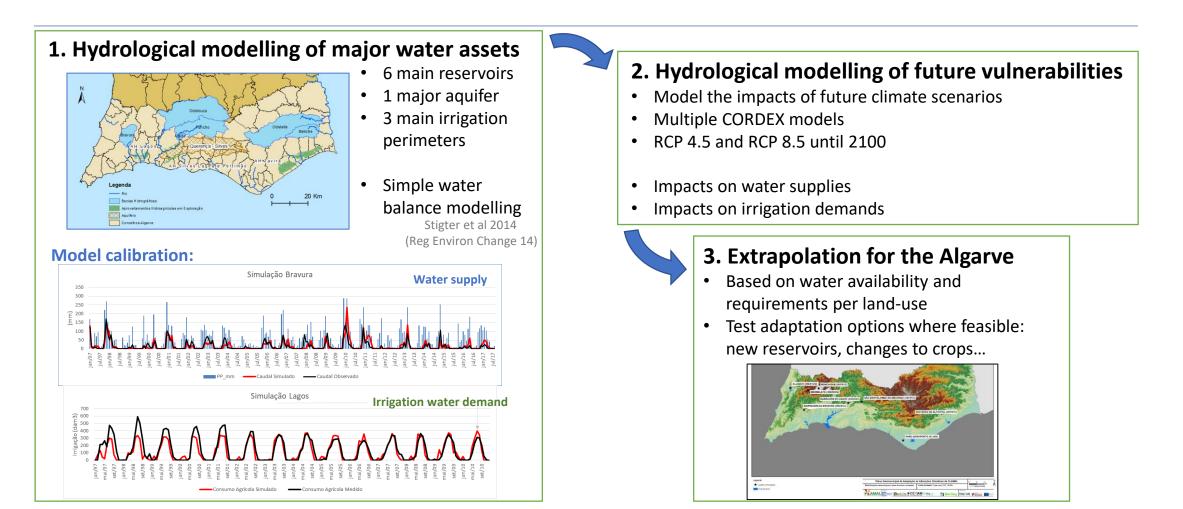
© Authors All rights reserved

Water resources in the Algarve today

- Dry climate with recurrent droughts
- Available water resources:
 - Intermittent rivers with torrential flow, with dams in the largest
 - Large and productive coastal aquifers, some are contaminated
- Water requirements:
 - Irrigation: orange trees: ~2/3rd
 - Domestic use and tourism: ~1/3rd
- Water requirements are 43% of available resources
 - Threshold of severe water stress



Water supply network in the Algarve

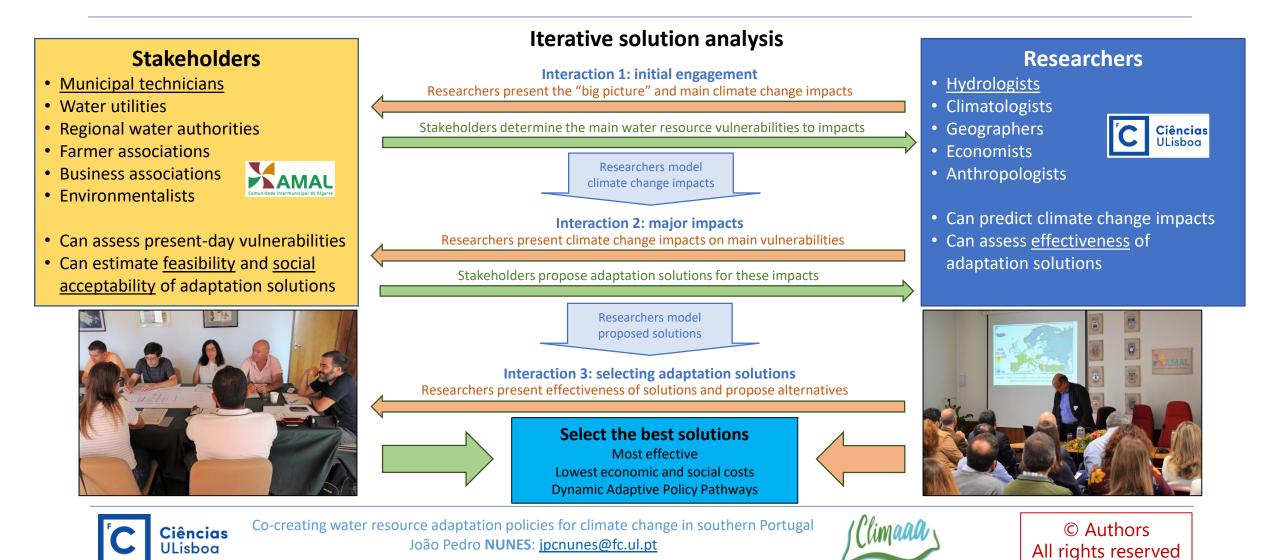


Ciências ULisboa

Co-creating water resource adaptation policies for climate change in southern Portuga João Pedro **NUNES**: jpcnunes@fc.ul.pt (Climaaa)

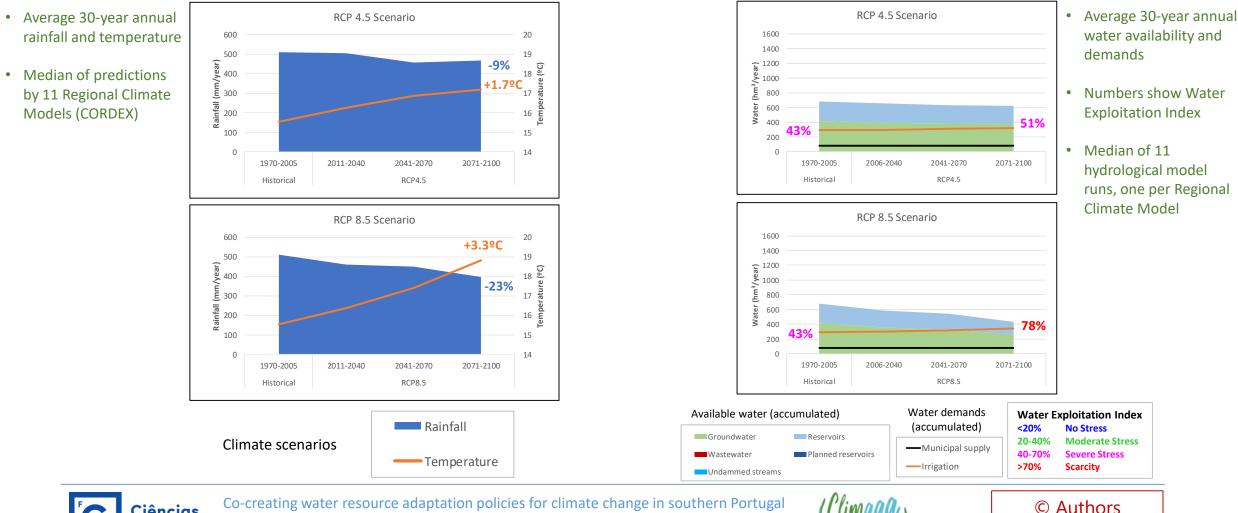
All rights reserved

Methods: modelling climate change impacts


Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro NUNES: jpcnunes@fc.ul.pt

Climaaa

© Authors


All rights reserved

Methods: selecting adaptation solutions

Results: climate change impacts on water resources

Evolution from the 1970s until the end of the 21st century

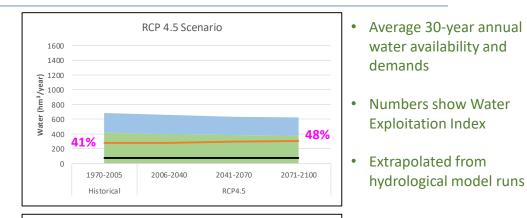
Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro NUNES: jpcnunes@fc.ul.pt

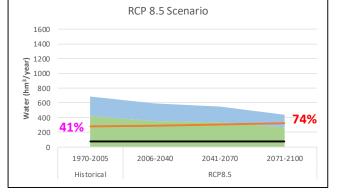
All rights reserved

Adaptation options: decrease consumption

Evolution from the 1970s until the end of the 21st century

Improve water use efficiency


Stakeholder proposal:


- Distribution systems have losses
- Water use is excessive for requirements
- Promotes personal responsibility of the public
- Best use of existing resources: efficient and morally correct

Effectiveness analysis:

- The 2005 drought led to large improvements in water use efficiency, largely unreported
- Little room for improvement: 5% less water use
 - Transmission losses: 10-15%
 - Best practices already used in irrigation
 - Population is drought-aware

Available water (accumulated) Water demands (accumulated) Water <20%</th> Groundwater Reservoirs -Municipal supply Wastewater Planned reservoirs -Irrigation Undammed streams -Irrigation >70%

Water Exploitation Index		
< 20%	No Stress	
20-40%	Moderate Stress	
40-70%	Severe Stress	
> 70%	Scarcity	

© Authors

All rights reserved

Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro NUNES: jpcnunes@fc.ul.pt

Adaptation options: decrease consumption

Evolution from the 1970s until the end of the 21st century

Improve water use efficiency

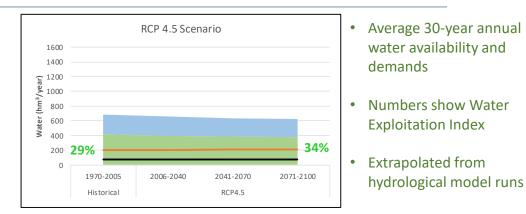
Stakeholder proposal:

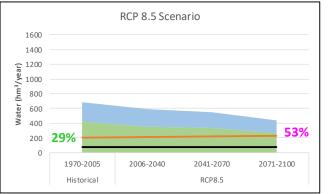
- Distribution systems have losses
- Water use is excessive for requirements
- Promotes personal responsibility of the public
- Best use of existing resources: efficient and morally correct

Effectiveness analysis:

- The 2005 drought led to large improvements in water use efficiency, largely unreported
- Little room for improvement: 5% less water use
 - Transmission losses: 10-15%
 - Best practices already used in irrigation
 - Population is drought-aware

Decrease irrigation use


Researcher proposal:


- Currently irrigated crops orange trees are not drought adapted and consume a lot of water
- Replace with traditional crops: almond trees, olive trees, carob trees...
- Large improvement: 30-40% less water use

Feasibility analysis:

- Solution already tested in the past
- Replacement crops would be less profitable
- Political issue: cut water from local farmers to supply tourism (municipal use)?
- Not socially feasible

Available water (accumulated) Water demands Water Exploitation Index (accumulated) <20% **No Stress** Groundwater Reservoirs 20-40% Moderate Stress —Municipal supply Wastewater Planned reservoirs 40-70% Severe Stress Irrigation >70% Scarcity Undammed streams

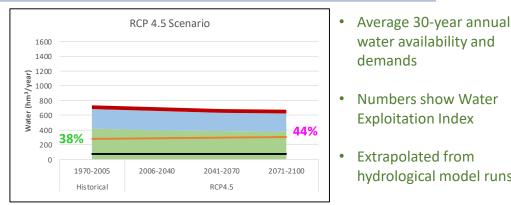
Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro NUNES: <u>jpcnunes@fc.ul.pt</u>

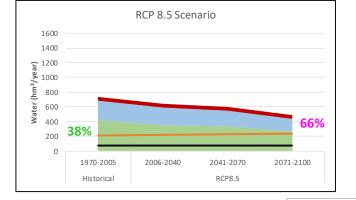
(Climaaa

Adaptation options: technology

Evolution from the 1970s until the end of the 21st century

Wastewater recycling


Stakeholder proposal:


- Fashionable, but with a lot of negative issues ٠
- Available wastewater is small compared with • water requirements
- Coastal wastewater treatment plans: would • require new distribution networks

Effectiveness analysis:

- Agree on all points
- Small improvement: 8-12% more water

- **Exploitation Index** • Extrapolated from
 - hydrological model runs

Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro NUNES: jpcnunes@fc.ul.pt

No Stress

Scarcity

Moderate Stress

Severe Stress

Adaptation options: technology

Evolution from the 1970s until the end of the 21st century

Wastewater recycling

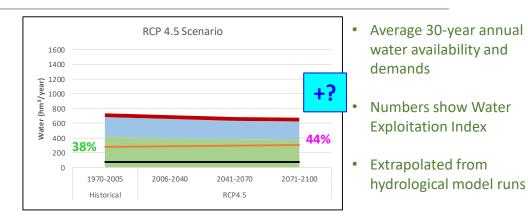
Stakeholder proposal:

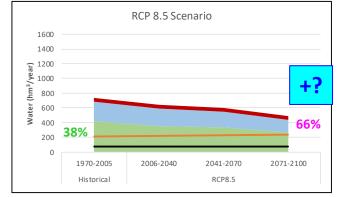
- Fashionable, but with a lot of negative issues ٠
- Available wastewater is small compared with • water requirements
- Coastal wastewater treatment plans: would • require new distribution networks

Effectiveness analysis:

- Agree on all points
- Small improvement: 8-12% more water

Desalination


Researcher proposal:


- Good conditions: coastal area, solar energy
- High costs/impacts but very large supply
- Can solve the problem
 - Can supply all current water needs

Feasibility analysis:

- Agreed on effectiveness
- Large-scale work would be difficult to implement, politically
- Time will decrease costs and impacts
- · Re-assess in the future, if all else fails

Water demands

(accumulated)

Irrigation

Water Exploitation Index <20% **No Stress** 20-40% Moderate Stress —Municipal supply 40-70% Severe Stress >70% Scarcity

Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro NUNES: jpcnunes@fc.ul.pt

Available water (accumulated)

Reservoirs

Planned reservoirs

Groundwater

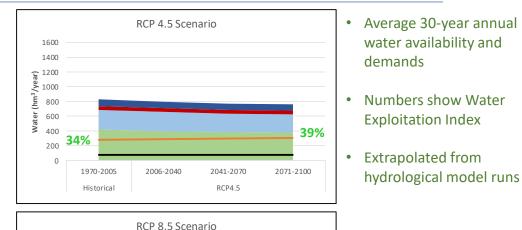
Wastewater

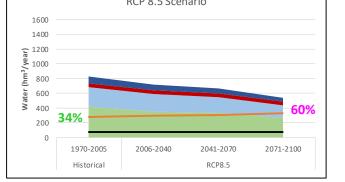
Undammed streams

Adaptation options: increase water collection

Evolution from the 1970s until the end of the 21st century

Build new reservoirs


Stakeholder proposal:


- Reservoirs have increased available water resources in recent years - proven solution
- Many streams are still undammed

Effectiveness analysis:

- Most large streams are dammed
- Remaining rivers: too small, too flat, over porous bedrock...
- Only one feasible site remains for a new dam
- Small improvement: 12-14% more water

Available water (accumulated) Water demands Water Exploitation Index (accumulated) <20% **No Stress** Reservoirs 20-40% Moderate Stress —Municipal supply Severe Stress Planned reservoirs 40-70% Irrigation >70% Scarcity Undammed streams

Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro NUNES: jpcnunes@fc.ul.pt

Groundwater

Wastewater

Adaptation options: increase water collection

Evolution from the 1970s until the end of the 21st century

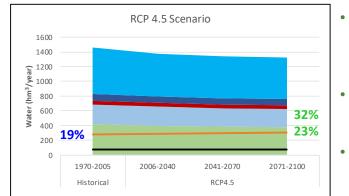
Build new reservoirs

Stakeholder proposal:

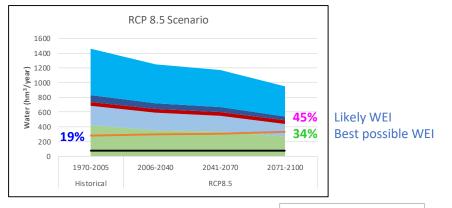
- Reservoirs have increased available water resources in recent years – proven solution
- Many streams are still undammed

Effectiveness analysis:

- Most large streams are dammed
- Remaining rivers: too small, too flat, over porous bedrock...
- Only one feasible site remains for a new dam
- Small improvement: 12-14% more water


Researcher proposal:

- Promote infiltration and aquifer recharge
- Spatially distributed: many small works
- Traditional approaches improved by technology
- <u>Moderate improvement</u>: at least 20% more water


Feasibility analysis:

- An improvements on traditional methods: politically easier to implement
- Small works: scalable, easy to adjust to funding and effectiveness
- <u>Best short-term solution</u>

Average 30-year annual water availability and demands

- Numbers show Water
 Exploitation Index
- Extrapolated from hydrological model runs

Available water (accumulated) Water demands Water Exploitation Index (accumulated) <20% **No Stress** Groundwater Reservoirs 20-40% Moderate Stress —Municipal supply Wastewater Planned reservoirs 40-70% Severe Stress Irrigation >70% Scarcity Undammed streams

Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro NUNES: jpcnunes@fc.ul.pt

• DAAP: a method to

Hasnoot et al 2013 (Global Env Change 23)

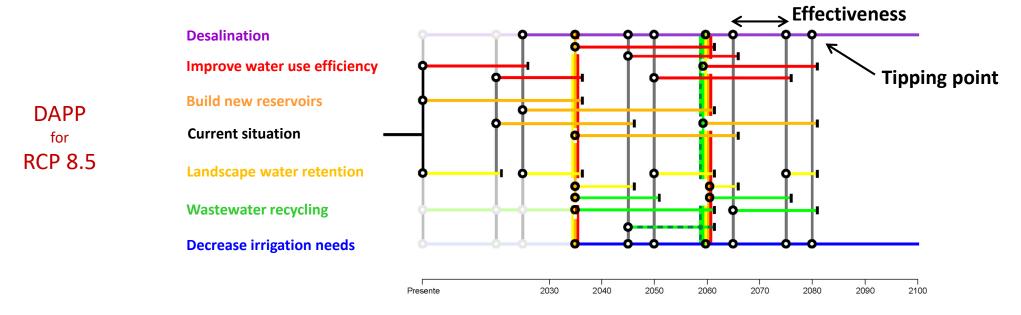
- Identify an adaptation objective and select possible adaptation measures
- Determine the effectiveness of each measure how long will it work to maintain the objective?
- Identify "tipping points" when one measure becomes insufficient and new ones must be adopted
- Order measures sequentially in time, adopting a new one after each "tipping point"

• DAAP: a method to

Hasnoot et al 2013 (Global Env Change 23)

- Identify an adaptation objective and select possible adaptation measures
- Determine the effectiveness of each measure how long will it work to maintain the objective?
- Identify "tipping points" when one measure becomes insufficient and new ones must be adopted
- Order measures sequentially in time, adopting a new one after each "tipping point"

Decrease irrigation needs


• DAAP: a method to

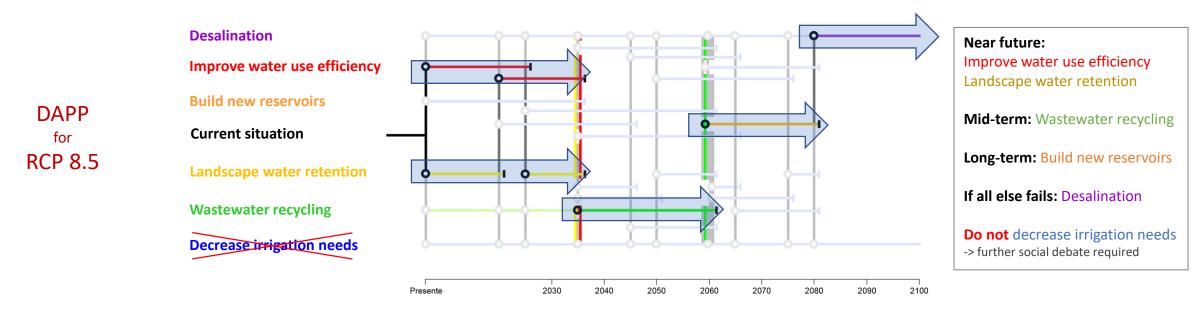
Hasnoot et al 2013 (Global Env Change 23)

© Authors

All rights reserved

- Identify an adaptation objective and select possible adaptation measures
- Determine the effectiveness of each measure how long will it work to maintain the objective?
- Identify "tipping points" when one measure becomes insufficient and new ones must be adopted
- Order measures sequentially in time, adopting a new one after each "tipping point"

Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro NUNES: jpcnunes@fc.ul.pt


• DAAP: a method to

Hasnoot et al 2013 (Global Env Change 23)

© Authors

All rights reserved

- Identify an adaptation objective and select possible adaptation measures
- Determine the effectiveness of each measure how long will it work to maintain the objective?
- Identify "tipping points" when one measure becomes insufficient and new ones must be adopted
- Order measures sequentially in time, adopting a new one after each "tipping point"

Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro NUNES: jpcnunes@fc.ul.pt

Conclusions

- Water resources in southern Portugal are vulnerable to a future drier climate
- Several adaptation options have different efficiencies and costs: resources, environmental, social...
- Adaptation solutions can be build from the interaction between researchers and stakeholders
 - Researchers: quantify impacts and solution effectiveness
 - Stakeholders: decide adaptation goals, assess solution feasibility
- Another advantage: stakeholder buy-in will help the implementation of the Algarve climate change adaptation plan

Co-creating water resource adaptation policies for climate change in southern Portugal João Pedro **NUNES**: <u>jpcnunes@fc.ul.pt</u> (Climaaa

© Authors All rights reserved

Thank you for your attention!

