Multi-year data-model evaluation reveals the importance of nutrient availability over climate in arctic ecosystem C dynamics

Efrén López-Blanco¹, Marcin Jackowicz-Korczynski^{1,2}, Mikhail Mastepanov^{1,3}, Kirstine Skov^{1,4}, Andreas Westergaard-Nielsen⁴, Mathew Williams⁵ and Torben R. Christensen¹

¹ Department of Biosciences, Arctic Research Center, Aarhus University, Roskilde, Denmark

- ² Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- ³ Oulanka Research Station, Oulu University, Kuusamo, Finland

⁴ Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of

Copenhagen, Copenhagen, Denmark

⁵ School of GeoSciences, University of Edinburgh, Edinburgh, UK

> <u>https://doi.org/10.1088/1748-9326/ab865b</u> <

EGU2020

EV EV

How do we quantify and explain the differences in CO₂ exchange?

Photosynthesis

GPP

increment of Cuptake

- plant productivity and LAI (Street et al., 2013)
- nutrient availability (<u>Shaver and Chapin III, 1980</u>)
- CO₂ fertilisation (Sitch et al., 2008)
- shrub expansion (<u>Myers-Smith et al., 2011</u>)
- vegetation greening (<u>Myneni et al., 1997</u>)

NEE Net Ecosystem Exchange (NEE) Gross Primary Production (GPP) R_{eco} NEE = GPP + Reco Heterotrophic Autotrophic Respiration Respiration increment of C release microbial turnover (Commane et al., 2017) heterotrophic respiration (Webb et al., 2016) methane emissions (Mastepanov et al., 2008) herbivore exclusion (Falk et al., 2015) episodic biological events (López-Blanco et al., 2017)

R.Q.s How different is high Arctic NEE compared to low Arctic NEE in Greenland? What are the key driving factors?

Kobbefjord fen

- Southwestern Greenland (64° 07' N; 51° 21' W)
- Low Arctic site with an average T_{July} of 11-13° C
- No permafrost
- Eriophorum angustifolium and Scirpus caespitosus
- Sunlight hours from May to September ~ 14-21 hrs

Zackenberg fen

- Northeastern Greenland (74° 28' N; 20° 34' W)
- High Arctic site with an average T_{July} of 7-9° C
- Continuous permafrost
- Eriophorum scheuchzeri and Dupontia psilosantha
- Sunlight hours from May to September ~ 21-24 hrs

López-Blanco et al. (in press) [ERL]

López-Blanco et al. (in press) [ERL]

Why Zack-Fen has higher C sink strength across shorter growing seasons?

• Is Zackenberg **<u>nutrient richer</u>**? Aboveground? Belowground?

• Is Zackenberg nutrient richer? Aboveground? Belowground? Muskox influence?

The presence of muskox in Zackenberg has been associated with significant increases of N concentration and enhanced plant quality (i.e. C:N ratio)

Mosbacher et al. (2018) [Ecosystems]

- Is Zackenberg **<u>nutrient richer</u>**? Aboveground? Belowground? Muskox influence?
- Is the C sink strength enhanced due to **longer light hours**?

Using a random forest machinelearning technique the importance of photosynthetic active radiation to NEE at diurnal, seasonal and annual scales in Zackenberg (with 24-h daylight in the arctic summer) was not larger than in Kobbefjord.

For a full description about the random forest technique, see <u>López-</u><u>Blanco et al. (2017)</u>.

López-Blanco et al. (2017) [BG] López-Blanco et al. *(in press)* [ERL]

- Is Zackenberg **<u>nutrient richer</u>**? Aboveground? Belowground? Muskox influence?
- Is the C sink strength enhanced due to **longer light hours**?
- Is the **hydrology/parent material/permafrost** playing a key role?
- 1. N availability is controlled by the **lateral transport** from surrounding slopes (<u>Rasmussen et al., 2020</u>)
- The parent material in Kobbefjord is dominated by <u>slow-weathering Precambrian gneisses (Søndergaard et al.,</u> 2012), while in Zackenberg is dominated by <u>faster-weathering basalts and sedimentary deposits</u> (<u>Cable et al., 2018</u>)
- 3. <u>Permafrost may help to retain N availability</u> more concentrated than permafrost free areas (<u>Olefeldt et al., 2014</u>)
- 4. <u>Permafrost soil release more nutrients</u> than active layer soils (<u>Reyes & Lougheed, 2015; Keuper et al., 2012</u>), releasing plant-available N and ultimately stimulating plant productivity

Soil Plant Atmosphere (SPA) model

- SPA (Williams et al., 1996, 2000...)
 - High vertical mechanistic point model
 - Multilayer canopy (10) and soils (20)
 - High temporal resolution (30 min)
 - Leaf-level scale of parametrization
 - Canopy-level prediction
 - Can be validated with eddy flux data

• DALEC (Williams et al., 2005)

- Box carbon model
- Phenology and carbon dynamics:
 - C allocation, litterfall, decomposition
- Model imbedded in SPA

López-Blanco et al. (*in press*) [ERL]

Parameter	Unit	Function	Value	Source	SI-NEE	SI-GPP	SI-R _{eco}
•••	•••	•••	•••	•••	•••	•••	•••
Turnover rate of labile pool	hour ⁻¹	CC	0.0022	Tuned	0.629	0.131	0.075
NPP allocated to foliage	fraction	CC	0.7	Smallman et al., 2013	0.713	0.147	0.084
Fraction of leaf loss to litter	fraction	CC	0.3	Tuned	0.963	0.166	0.077
NPP allocated to roots	fraction	CC	0.7	Smallman et al., 2013	1.052	0.033	0.080
Mineralisation rate of SOM	hour ⁻¹	CC	0.000001	Tuned	1.259	0.000	0.140
Rate coefficient for Vcmax	μ mol C g N ⁻¹ s ⁻¹	PT	14	Smallman et al., 2013	1.334	0.227	0.104
Initial SOM C	g C m ⁻²	IC	4800	Hugelius et al., 2013	1.346	0.001	0.150
Initial root C	g C m ⁻²	IC	200	Field data	1.584	0.047	0.124
Average foliar nitrogen	$g N m^{-2}$	CS	1.61	Field data	3.154	0.916	0.667
Maximum foliar carbon stock	g C m ⁻²	CC	28	Field data	3.868	0.922	0.595
Rate coefficient for Jmax	μmol C g N ⁻¹ s ⁻¹	PT	36	Smallman et al., 2013	4.432	0.786	0.369
Leaf mass per area	g C m ⁻²	CS	56.27	Field data	4.546	1.137	0.769

Ranking table listing the sensitivity indices (SI) for NEE, GPP and R_{eco} subject to the average $\pm 10\%$ change of each of the 36 ecosystem parameters in SPA (here only shown the 12 most sensitive).

ARCTIC RESEARCH CENTRE (\mathbf{i})

[cc

López-Blanco et al. (2018) [JGR]

Cumulative NEE in Zackenberg across 11 years (2008-2018) using different experimental setups in SPA (MOD0-3):

- <u>OBS</u>: EC NEE observations
- <u>MOD0</u>: Zackenberg climate forcing using <u>López-Blanco et al. (2018)</u>'s model calibration;
- <u>MOD1</u>: MOD0 including snowmelt period retrieved from the time-lapse camera monitoring;
- MOD2: MOD1 including Q₁₀ tuning;
- <u>MOD3</u>: MOD2 including *in-situ* C and N information.

López-Blanco et al. (in press) [ERL]

SPA can generate a system consistent with Zackenberg fluxes <u>only</u> by parameterisation based on the biomass sampling data from the field campaign.

Using the initial calibration from Kobbefjord under Zackenberg climate fails to simulate annually aggregated NEE within the observation's range.

V Take home messages

- Zackenberg fen has a significant higher C sink strength during repeatedly shorter growing seasons.
- Zackenberg is a nutrient richer fen the increased C uptake strength is associated with:
 - A. higher C and N stocks and enhanced plant quality.
 - B. higher levels in soils of DOC, nutrients such as DON, NO₃⁻, NH₄⁺, K⁺, and electroconductivity.
- Growing season limitations of plant phenology on net C uptake <u>have been more than counterbalanced</u> by the increased leaf nutrient content at the Zackenberg site.
- A <u>simple set of parameters</u> from one single field campaign <u>was enough to explain a significant portion of the C</u> <u>flux variability</u> at very high temporal resolution in a very complex ecosystem.
- More sites for high-temporal monitoring of terrestrial C dynamics are needed to establish robust baselines for model calibration and validation, thereby underpinning ecological forecasting techniques

More details in https://doi.org/10.1088/1748-9326/ab865b

Thanks for the attention! Questions?

() BY

(cc)

