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Context
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At the University of Potsdam, we recently  have developed 1D (Guillemoteau et al, 2016) and 3D 
(Guillemoteau et al, 2017, 2019) inversion procedures for loop-loop electromagnetic induction (EMI) 
data.
Our 1D non-linear inversion algorithm is a modified version of the OCCAM procedure described in Aster, 
et al, (2005), which incorporates prior information on data uncertainties and inverts the model in the log 
space to impose positivity constraints:
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𝐖𝐦 now (Klose et al, in prep) includes smooth (sm) (Auken et al, 2005, Socco et al, 2009) and sharp (sh) 
(Vignoli et al, 2014) constraints, which are applied on both x and z directions (LCI):
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Context

Example of LCI inversions of DUALEM-21 
data collected above a conductive peat 
layer:

Smooth (x) - smooth (z)

Sharp (x) - sharp (z)

Smooth (x) - sharp (z)

𝜎 (S/m)

𝜎 (S/m)

𝜎 (S/m)

You can see the most recent application of this 
algorithm to EMI CMD explorer data in this EGU 

2020 presentation!

EGU2020-19011 | Displays | HS8.1.5/SSS6.12
Exploration of electromagnetic induction potential to 
understand groundwater infiltration within the Chalk 

critical zone
Marc Dumont et al, Thu, 07 May, 16:15–18:00 | D370 

(Klose et al, in prep): © Authors. All right reserved

https://meetingorganizer.copernicus.org/EGU2020/session/35615
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-19011.html


Goal
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Our aim is to develop a common inversion platform for different kinds of geophysical 
data set, for example, EMI and Surface Wave (SW): 

𝜎1, 𝑉𝑠,1, 𝑑1

.

.

.

𝜎2, 𝑉𝑠,2, 𝑑2

𝜎𝑁𝑙 , 𝑉𝑠,𝑁𝑙 , 𝑑𝑁𝑙

EMI data
+

Surface 
Wave data

Joint inversion

In this respect, the purpose of this study is to evaluate how our inversion strategy for EMI 
data can be applied to the 1D inversion of SW dispersion curves.

The present study shows preliminary results only.

© Authors. All right reserved



Forward modelling and inversion
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The 1D forward modeling code is based on the finite elements approach described in 
Haney and Tsai, (2020).

Our novel inversion algorithm relies on two decoupled grids: one discretizing the model 
parameters, the other (denser) for the FE computation.

This step is necessary to make our inversion 
algorithm practical (especially for the LCI) as it 
reduces by around one order of magnitude 
the number of model parameters!

It also allows the design of non-homogeneous 
grid.

© Authors. All right reserved



Forward modelling of SW data
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First example of 1D synthetic data set

300 m/s

600 m/s

© Authors. All right reserved



Smooth and sharp VCI inversions
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First tests with noise free data: smooth(z) vs sharp(z)

DOI (for 
96% of the 
data)

True interface

Typical limitation of the 
smoothness constraint… which is avoided by the 

sharp regularization

“Too thin bed”?

Area of the model which is  
poorly constrained by the 
data

© Authors. All right reserved



Hybrid smooth and sharp LCI inversions
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LCI:  smooth(x)sharp(z)  vs sharp(x)sharp(z) 

The LCI improves the 
continuity of the 
structures in areas 
that are less 
constrained by the 
data

The LCI improves the 
continuity of the 
structures in areas 
that are less 
constrained by the 
data

DOI (for 
96% of the 
data)

© Authors. All right reserved



Forward modelling of SW data
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Second example of 1D synthetic data set: adding some geological complexity

300 m/s

600 m/s

450 m/s

Random minor velocity 
variations © Authors. All right reserved

Noise resulting 
from the random 
minor variations in 
the input model



VCI sharp vs LCI sharp
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VCI sharp(z)  vs LCI sharp(x) sharp(z) 

DOI (for 
96% of the 
data)

Poorly resolved 
third layer velocity

Better constrained here 
thanks to the hypothesis 
of lateral consistency 
imposed by the LCI

High lateral 
variations due to 
the geological 
noise added to the 
input model

No more high lateral 
variations while still 
fitting the data! (i.e., 
no data smoothing 
induced at all)



VCI smooth(z)
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300 m/s

600 m/s

450 m/s

True model

© Authors. All right reserved



LCI smooth(x) smooth(z)
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300 m/s

600 m/s

450 m/s

True model

z

© Authors. All right reserved



LCI sharp(x) sharp(z)
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300 m/s

600 m/s

450 m/s

True model

© Authors. All right reserved



Synthetic data + model noise+ 2% data random noise 
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Synthetic data + model noise+ 2% data random noise 
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Synthetic data + model noise+ 5% data random noise 
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Synthetic data + model noise+ 5% data random noise 
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Summary: results obtained with the same inversion setup
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Model noise only

Model noise + 2% data noise

Model noise + 5% data noise

z

z

z



Conclusion
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• We applied our EMI inversion tools to the 1D inversion of seismic surface wave data

• We implemented both VCI and LCI approaches incorporating smooth and sharp 
constraints in both directions (x,z)

• From this preliminary synthetic study, the LCI with sharpness constraints in both 
directions (x,z) shows the best imaging capabilities

• Next step is to invert a real data set!

Thank you for your comments and feedback!

julien@geo.uni-potsdam.de

© Authors. All right reserved
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Data misfit
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Data misfit
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