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Abstract

i

The mass lost from Greenland ice sheet makes for one of the most important contribution
to the global sea level rise, and it is under constant monitoring. However, still little is known

about the heat flux at the glacier bedrock, and how it affects dynamics of the major outlet
glaciers in Greenland.

Recent studies suggest the hotspot currently under Iceland to have been under eastern
Greenland at ~40 Ma BP and that the upwelling of hot material from the Iceland plume

towards Greenland is ongoing. A warm upper mantle has a low viscosity, which in turn
causes the solid Earth to rebound much faster to deglaciation.

We have good reasons to believe that mantle beneath SE-Greenland has very low viscosity
(Khan, et al. 2016), as also suggested by the discrepancy between the GPS velocities and the
predicted purely elastic deformations caused by present-day ice loss.

Here we present a preliminary computation of the Earth deformation (GIA) driven by a low
viscosity mantle excited by the deglatiation since the little ice age (LIA) to the present day.

We produce predictions of such deformation (GIA models) and compare it with GPS uplift
rates in the area of Kangerdlugssuaqg glacier.
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Hot spot tracks
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Hot spot tracks
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GPS upllft residual and Emplrlcal GIA
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Estimate of ICE change since LIA (for our GIA models) =
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The low-viscosity mantle structure (for our GIA models)
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PS residual vs GIA Model predictions
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2 GPS uplift rate to be used as main constraints

10.3 +/- 0.2 mm/yr
KUAQ 12.0+/-1.3 mm/yr

Khan et al. 2016

 GPS residual vs GIA Model predictions =
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GPS residual vs GIA Model predictions @
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