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Estuarine networks: bodies of water that consist of multiple channels 
and in which water motion is drive by tides and river discharge.



Estuarine networks: bodies of water that consist of multiple channels 
and in which water motion is drive by tides and river discharge.

Example 1: The Berau Delta (Indonesia)



Estuarine networks: bodies of water that consist of multiple channels 
and in which water motion is drive by tides and river discharge.

Example 2: The Pearl River Delta (China)
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1. Tides are sensitive to sea level rise. 
2. Water transport is less sensitive to sea level rise. 

Main messages:



Research question

How will tide and net water transport in the estuarine 
network respond to sea level rise (SLR)?
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Net water transport: tidally averaged integral of velocity over cross-section.



2DV idealised channel network
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near one branching point
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2DV idealised channel network
Prescribed river discharge

Prescribed semi-diurnal tide x
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Mass and energy conservation A scheme of model domain 
near one branching point
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Shanghai

Expected sea level rise in a century

1-2 m (Kuang et al, 2017)

Tidal range ~ 2m (mainly M2)

River discharge 104 m3/s (dry season) 

Network model for the Yangtze Estuary
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Shanghai

Expected sea level rise in a century

1-2 m (Kuang et al, 2017)

Tidal range ~ 2m (mainly M2)

River discharge 104 m3/s (dry season) 
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Dry season

Monthly averaged tidal forcing

Default settings: 2014
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Solid lines: modelled tide

Dots: observed tide

Time of high water relative to that at sea

Tidal elevation amplitudes
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Dry season

Monthly averaged tidal forcing

Default settings: 2014

Model is reliable
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Solid lines: modelled tide

Dots: observed tide

Time of high water relative to that at sea

Tidal elevation amplitudes
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Vertical structure of tidal current

North Passage South Passage South Channel

Maximum tidal current at the surface. 
Strong current in the SP due to channel convergence.
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Water transport
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Different from 1D model of Alebregtse and de Swart (2016) 
due to two additional subtidal components in this 2DV model:
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1. baroclinic pressure/density driven flow 
2. excess mass transport due to free surface variation.
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Sensitivity of tides to SLR
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Tidal elevation amplitudes at branching points

Time of high water with respect to sea

Tides become stronger and propagate faster 
if sea level rises
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Sensitivity of tides to SLR
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Tidal elevation amplitudes at branching points

Time of high water with respect to sea

Tides become stronger and propagate faster 
if sea level rises

Reasons:

Increasing water depth =>

Less friction Weaker river flow

=>

Tides propagate faster

=>

Convergence wins

=>

Slower decay
=>

=>
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Response of tidal current 
to 2m SLR
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Tidal current amplitude difference in the NB

Difference in depth-averaged tidal current amplitudes

Tidal current 

=>

Local pressure gradient

Reason for the changes:

ζ = z
H

Tidal current is proportional to 
local pressure gradient
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Sensitivity of water 
transport to SLR

River water transport is hardly affected.
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Sensitivity of water 
transport to SLR

River water transport is hardly affected.
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Net water transport 357
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2m sea level rise (m3/s)
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Sensitivity of water 
transport to SLR

River water transport is hardly affected.
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River water transport

Net water transport 357
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Difference in net water transport after 
2m sea level rise (m3/s)

Most important contribution: 
density driven flow
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Conclusions
Impacts of 2 metre sea level rise on

Tides

Net water transport

1. Tidal amplitudes increase due to weaker exponential decay of tidal wave.

2. Tidal waves travel faster due to less friction and weaker river flow.

1. River water transport is almost unaffected by SLR.

2. Subtidal transports due to baroclinic pressure, advection and dynamic 

pressure might be important.

Questions? Feedback?
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