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Idea behind the project:
– Automatically detect ash emissions of volcanoes independent of

weather conditions and daylight

– Process Data at the station to minimize data transmission

– Transmit this information to local authorities

Task
– Develop a neural network that is capable of detecting eruptions

automatically

Requirement
– a network architecture with low computational cost.

– the ability to classify data from a live stream
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For recording the data we use a Frequency Modulated Continous Wave Radar. Range Gate resolution in case of Turrialba was 200 m and

range gates RG5, RG9-RG11 were recorded . In case of Volcan de Colima we used a range gate length of 600 m and range gates RG1-

RG6 were recorded. Data at Volcan de Colima were recorded in 2014/2015 and at Turrialba volcano data was recorded between July

2017 and Jan 2019.
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Difficulties involved in radar data

Radars can only measure velocities

along the radar beam thereby

mapping a 3D process onto the 1D

radar beam.

Radars detect any moving object inside a radar beam and therefore

discriminating between an eruption and rain is not that straight

forward. On the left side we show three schematic drawings of an

eruption column and the associated velocity measured by the radar.

On the right side three different rain scenarios are depicted along with

the associated velocities recorded by a radar. Note that objects

moving away from the radar are recorded with negative velocities and

objects moving towards the radar are assigned positive velocities.



Typical Doppler radar recording of an eruption and rain

This figure shows a typical velocigram. It shows the temporal evolution of energy reflected by objects inside the

radar beam moving at different velocities.

The data shown above was recorded at Turrialba volcano. The upper plot shows the data from the 10th range gate,
where a typical pattern for eruptions can be seen. The bottom plot shows data from the 5th range gate which is

located in between the instrument and the vent. It shows a typical rain signal.



Recording of an eruption at Volcan de Colima volcano during rain. Shown is the full set of data recorded by the

radar (Range Gates 1-6). They are separated by the white horizontal lines. Due to spectral leaking in the radar

during data processing the eruption (occurred in Range Gate 5) is also visible in range gates 3, 4, and 6.

While rain occurs closer to the instrument (RG1-RG4), the eruption is clearly visible in RG5.

Typical Doppler radar recording of an eruption during rain
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Data input into neural network

Each velocigram consists of many single Spectra recorded by the radar. One of those spectra is shown above. It was

recorded at Colima volcano and the vertical red lines are the different range gates. If rotated by 90° clockwise and

then color coding the amplitude we get one vertical line of a velocigram.

Velocity



– fully connected feed forward network

– one hidden layer was found to be sufficient

– Following Heaton (Introduction to Neural Networks with Java, 2008) we use

Ninput > Nhidden > Noutput

Nhidden = 2/3xNinput + Noutput

Nhidden < 2xNinput

We have tested different network architectures in case of the Colima data, to explore
which amount of data is sufficient for the classification process.

Network design

Single Spectrum recorded at

Colima volcano. We have tested

three different network with

different amounts of input

data. FullNet includes all data,

2RGTNet only two range gates

and 1RGTNet only the range

gate above the active dome.



Colima data

Data set Noise Rain Eruption Total

Training data 76913 59080 11336 147329

Test-1 data 17864 16284 2685 36833

Test-2 data 71937 Not labeled 10530 82467

Composition of the data sets used to train and analyze the neural networks. For the

test-2 data set only eruptions where picked.

Training and Test Data for Colima

We use data recorded at Volcan de Colima during the month of February and March 2015 for training.

The data is divided into three datasets: the training data and two sets of test data. Training data and the

first set of test data (test-1 data) were derived from data recorded in February 2015 and the second set

of test data (test-2 data) was derived from data recorded in March 2015. The training data and test-1

data was manually labeled multiple times to achieve the highest possible quality in labels. For the data

recorded in February 2015, eruptions as well as rain were picked. The second set of test data, Test-2

data, was picked only once. This allows a comparison between human (as in monitoring) and machine

performance.



We use data recorded at Turrialba volcano from July 2017 until Jan 2019.

Turrialba data

Data set Noise Rain Eruption Total

Training data 38161 38015 38097 114273

Validation data 4726 4800 4758 14284

Test data 4727 4799 4759 14285

The Training and Validation data sets were used to train the neural network.

The Test data set was not used while training.

Training and Test Data for Turrialba



FullNet 2RGTNet 1RGTNet

Accuracy training data 99.3% 97.2% 90.6%

Loss training data 0.026 0.082 0.246

Accuracy test-1 data 98.9% 96.9% 90.4%

Loss test-1 data 0.038 0.089 0.252

Training results

Measuring the performance of the different networks. A categorical cross-entropy (Goodfellow et al., 2016) is used as

a loss function. All classes (noise, rain, eruption) have been taken into account, to calculate those values.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org

Colima data

Accuracy training data 98.67 % 

Loss training data 0.045

Accuracy validation data 98.57 % 

Loss validation data 0.047 
Accuracy test data 98.48 % 

Loss test data 0.053 

Turrialba data



Noise Rain Eruption

Noise 76302 (99.2%) 222 (0.4%) 102 (0.9%)

Rain 571 (0.7%) 58846 (99.6%) 85 (0.7%)

Eruption 40 (0.05%) 12 (0.02%) 11149 (98.5%)

Noise 17616 (98.6%) 82 (0.5%) 30 (1.1%)

Rain 240 (1.3%) 16199 (99.5%) 30 (1.1%)
Eruption 8 (0.04%) 3 (0.02%) 2625 (97.8%)

Training

data

Test-1

data
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Noise Rain Eruption

Noise 75748 (98.5%) 2080 (3.5%) 534 (4.7%)

Rain 809 (1.1%) 56881 (96.3%) 165 (1.5%)
Eruption 356 (0.5%) 119 (0.2%) 10637 (93.8%)

Noise 17511 (98%) 565 (3.5%) 134 (5%)

Rain 253 (1.4%) 15674 (96.3%) 46 (1.7%)
Eruption 100 (0.6%) 45 (0.3%) 2505 (93.3%)

Training

data

Test-1

data
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Confusion matrices for the FullNet and 2RGTNet network, for the training data and Test-1 data. The columns show what

has been picked and the rows the prediction of the neural network. Along the main diagonal, human interpretation and
the neural networks prediction match. The off-diagonal elements show the differences between human interpretation
and network prediction, e.g. the top right value shows the number of samples where eruption was assigned by a human
and the network predicted noise.

Confusion matrices for Colima



Noise Rain Eruption

Noise 38142 (99.9%) 23 (0.1%) 1339 (3.5%)

Rain 0 (0.0%) 38063 (99.9%) 131 (0.4%)
Eruption 19 (0.1%) 11 (0.0%) 36545 (96.1%)

Noise 9448 (99.9%) 7 (0.1%) 360 (3.8%)
Rain 0 (0.0%) 9501 (99.8%) 40 (0.4%)

Eruption 5 (0.1%) 9 (0.1%) 9199 (95.8%)

Training

data

Test &

validation

data

The columns show what has been picked and the rows the prediction of the neural network. Along the main diagonal,

human interpretation and the neural networks prediction match. The off-diagonal elements show the differences
between human interpretation and network prediction, e.g. the top right value shows the number of samples where
eruption was assigned by a human and the network predicted noise.

Confusion matrices for Turrialba



Runtime perfomance

Laptop i7-7500 CPU FullNet 2RGTNet 1RGTNet

mean 8.2 s 1.45 s 0.76 s

standard deviation 0.025 s 0.024 s 0.01 s

classification frequency 10 kHz 56 kHz 108 kHz

Rasberry PI 4/B 4Gb FullNet 2RGTNet 1RGTNet

mean 20.43 s 6.87 s 3.41 s
standard deviation 0.34 s 0.56 s 0.06 s

classification frequency 2 kHz 5 kHz 11 kHz

Comparison of time measurements for the different networks classifying about 82500 spectra. The classification rate

corresponds to the number of spectra the networks classify per second. Comparison time refers to the time of the
FullNet running on the Laptop with a i7-7500 CPU. Also note that in the case of the Rasberry PI only Test-1 Data were
classified as the 82500 Spectra of the Test-2 did not fit into its memory.



Data classification example from Volcan de Colima
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The second subplot shows the class for every spectrum: orange indicates the class picked by a human and blue the
class assigned by the neural network. The third subplot shows the probability (as determined by the neural
network) of the spectrum being associated with an eruption. This gives us more information about the network
output than only the predicted class. The last subplot shows the probability of the spectra being rain.

Here we show a data example

presented already earlier in the

slides, this time however with

the classification of the data

using FullNet. The figure is

composed of four subplots. The

first subplot shows the

velocigram of the radar data.

The x-axis shows the temporal

evolution of the signal.



Data classification example from Turrialba volcano
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Similar to the example shown in the last slide here we show a classification example from our Turrialba data set.

Class 0 is noise, class 1 is eruption, class 2 is rain. One can see clearly that the network has difficulties to determine
the exact end of an eruption (usually dominated by ash falling back onto the ground) or even finds more eruptions
than human-picked.



– Using two different data sets we have shown that a reliable automatic classification

of eruptions, rain and noise in the data is possible with an accuracy of at least 98 %

– Even a very simple network is capable of performing the classification task and can
run on a minicomputer having a low power consumption

– Classification on site is possible allowing automatic notification of authorities
without transmitting huge amounts of data. Nevertheless, manual validation is

recommended to minimize false positives.

– Even though distinguishing between very light rain and small eruptions is still a

problem, major eruptions are clearly detected.

Conclusions


