

EFFECTS OF CROP RESIDUE ON CARBON DIOXIDE, METHANE AND NITROUS OXIDE EMISSIONS ON CULTIVATED PEAT SOILS

SAMUEL MUSARIKA^{1,2} SMUSARIKA@CEH.AC.UK

UK CENTRE FOR ECOLOGY AND HYDROLOGY / BANGOR UNIVERSITY

Co-authors:

Chris Evans¹, Davey Jones², Niall McNamara³, Dave Chadwick²

1 UK Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, LL57 2UW 2 School of Natural Sciences, Bangor University, Bangor, LL57 2UW 3 UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP

INTRODUCTION

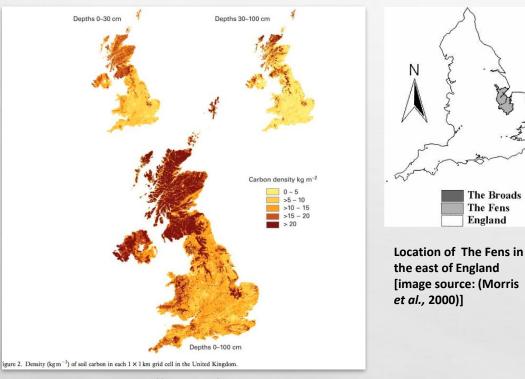


Image source: Bradley et al. 2005

- Global peatland coverage is about 3% (400 Mha)
 - Account for 30% of the global soil carbon storage
- (14%) of the UK's land is peatland
 - Approximately 3.3 million ha, 40% of which is modified for anthropogenic activity
 - Only 20% is considered near natural
 - e.g. The fens 5000km² but 3370km² under anthropogenic use (nearly 70%)
- UK soil carbon loss is estimated to be an average rate of 0.6% yr⁻¹, in extreme cases 2% yr⁻¹
- UK soil degradation costs over £1 billion per year

(EEA 2016:Foresight, 2011; Gilbert, 2012)

INTRODUCTION

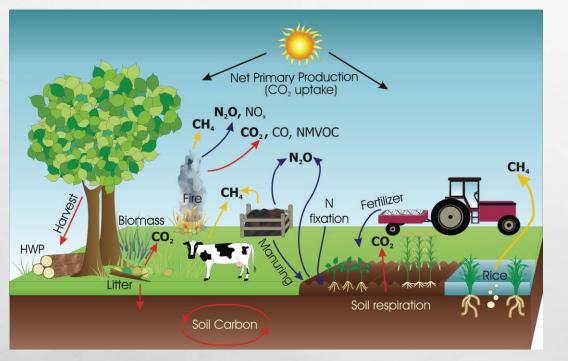


Image source: IPCC

- Globally, agriculture produces a third of anthropogenic greenhouse gas (GHG)
 - In Europe, agriculture is the second largest contributor of greenhouse gas (GHG)
- Horticulture alone on drained peatlands produces 6 times more CO₂ than restored deep peatland
- We are fast losing productive peatlands,
 - A third will be lost by 2050

(EEA 2016:Foresight, 2011; Gilbert, 2012)

PRESERVING PEATLANDS

Figure 1. Subsidence on one field at Rosedene Farm showing the field is now lower than the road which used to be same level circa 50 years ago.

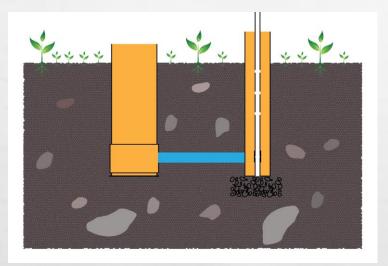
- Water table manipulation (usually -50 cm) can reduce peat loss but it is insufficient as soil compaction and oxidation is persistent. Rosedene Farm utilizes water table manipulation, but subsidence and peat loss continues (Figure 1.)
- Water table closer to the ground (e.g. -30 cm) possible for some crops but has some challenges (see Musarika *et al.*, 2017)
- Can peatlands be saved by importing Fresh Organic Matter (FOM)?

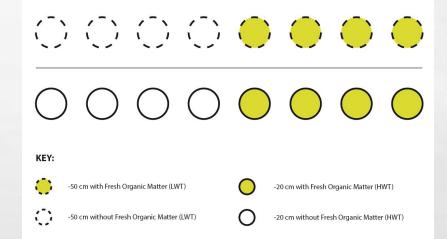
STUDY AIMS

Figure 2. Barley straw used as a fresh organic matter amendment (left) and when the barley straw was applied to the mesocosms.

- Fresh organic matter changes the decomposition rate of existing soil organic carbon (SOC). There is little evidence showing its effect on UK cultivated peat soils
- The aim is to assess the effects of crop residue, on the release of CO₂, CH₄ and N₂O in cultivated peat soils

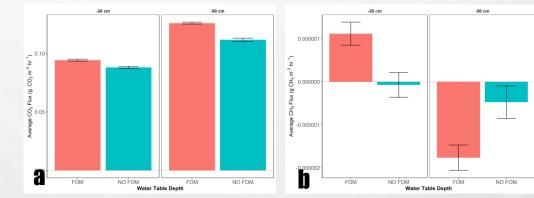
METHODS


d

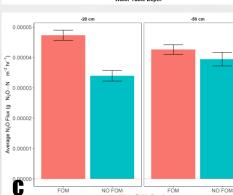

- 16 peat soil cores were collected from Rosedene Farm for the experiment (a,b)
- The cores were set up into mesocosms that were buried into the ground (a,b,c,d)
- FOM residue used was barley straw (10g per core) [Figure 2] and the experiment ran for 27 weeks
- The emissions in the experiment were measured using Licor Autochambers (8100-104), a Licor IRGA (LI8100) and a Picarro (G2301) connected in series for CH4 and N2O (e,f,g,h,i)

METHODS

Figure 3. A single core (left) connected to the water table management pipe/reservoir on the right


Figure 4. The cores were divided into two water tables (WT), half -50 cm (LWT) and half -20 cm (HWT). Half (4) from each WT had FOM added in week 6

RESULTS


The data in **Figure 3.** shows that there is an effect of both water table manipulation and FOM on fluxes

The -50 cm cores had significantly higher CO_2 fluxes than the -20 cm (p<0.05). The effect of FOM on CO_2 was higher in -50 cm (P<0.05). The -20 cm cores became CH_4 sources whilst the -50 cm cores became sinks of CH_4

FOM led to increased N_2O , which was significant in -20 cm (p<0.05)

Figure 3. The cumulative emissions over 27 weeks of a) CO₂, b) CH₄ and c) N₂O

Water Table Depth

CONCLUSION

Fresh organic matter in peatlands may be an unwise practice which can lead to increased CO_2 and N_2O emissions (Figure 3a & Figure 3c)

Fresh organic matter can also lead to increased CH4 fluxes under a high water table (- 20 cm)

However, the addition of fresh organic matter under a low water table (-50 in this study) could help CH_4 sequestration (Figure 3b)

REFERENCES

- 1. Frolking, S. et al., 2011. Peatlands in the Earth's 21st century climate system. *Environmental Reviews*, Volume 19, pp. 371-396.
- 2. Joosten, H. & Couwenberg, J., 2009. Are emission reductions from peatlands MRV-able?, Wageningen: Wetlands International, Ede.
- 3. Berglund, Ö. & Berglund, K., 2010. Distribution and cultivation intensity of agricultural peat and gyttja soils in Sweden and estimation of greenhouse gas emissions from cultivated peat soils. *Geoderma*, 154, pp.173-80.
- 4. Strack, M., 2008. *Peatlands and Climate Change*. Jyväskylä: International Peat Society.
- Musarika, S., Atherton, C.E., Gomersall, T., Wells, M.J., Kaduk, J., Cumming, A.M.S., Page, S.E., Oechel, W.C. & Zona, D., 2017. Effect of water table management and elevated CO2 on radish productivity and on CH4 and CO2 fluxes from peatlands converted to agriculture. Science of The Total Environment, 584-672, pp.665-72.