New insights into the gas-phase oxidation of isoprene by the nitrate radical from experiments in the atmospheric simulation chamber SAPHIR

06.05.2020 - EGU

erc

Philip Carlsson¹, Patrick Dewald², Justin Shenolikar², Nils Friedrich², John Crowley², Steven Brown³, François Bernard⁴, Li Zhou⁴, Juliane Fry⁵, Bellamy Brownwood⁵, Mattias Hallquist⁶, Epameinondas Tsiligiannis⁶, Xu Kangmin⁷, Rupert Holzinger⁷, Changmin Cho¹, Luisa Hantschke¹, Sungah Kang¹, David Reimer¹, Ralf Tillmann¹, Sergej Wedel¹, Rongrong Wu¹, Hendrik Fuchs¹, Luc Vereecken¹, Anna Novelli¹, Birger Bohn¹, Franz Rohrer¹, Thomas Mentel¹ ¹:IEK 8, Forschungszentrum Jülich GmbH, Jülich, Germany ²:Max-Planck Institute for Chemistry, Mainz, Germany ³:NOAA Earth System Research Laboratory, Boulder, CO, United States ⁴:CNRS, Orleans, France ⁵:Reed College, Chemistry and Environmental Studies, Portland, United States ⁶:University of Gothenburg, Department of Chemistry, Atmoshperic Sciences, Gothenburg, Sweden ⁷:Institute for Marine and Atmospheric Research Utrecht, Utrecht, Netherlands

© Authors. All rights reserved

MOTIVATION

S. Ball, ECG Environmental Brief No. 3

- Isoprene is a highly abundant BVOC with about 500 Tg/a
- NO₃ is responsible for most night-time oxidation where anthropogenic influences are present
- Yields low volatility nitrates, interesting for (new) particle and aerosol formation
- Sink for NO₂, changes O₃ production

INSTRUMENTATION

Nitrogen inorganic:

- NO / NO₂ / NO₃ / N₂O₅ / NO₃ reactivity (CLD, CRDS)
- HNO₃ (CIMS CO₃-, TD-NO₂-CRDS)
- HONO (LOPAP)

Nitrogen organic:

- Thermal decomposition of organic nitrogen family species (TD-NO₂-CRDS)
- Speciated nitrogen organic compounds (several CIMS, several PTR)

ROx:

- OH, RO₂, OH reactivity (LIF)
- HO₂ (LIF, CIMS)

TYPICAL EXPERIMENT RUN

- During the month long campaign, experiments on:
 - high RO₂ concentrations for RO₂ + RO₂ reactions
 - isomerisation of RO₂
 - photooxidation of the products
 - forcing HO₂ + RO₂ by increased [HO₂]
 - Influence of aerosol load with seeds
 - photooxidation of isoprene, followed by NO3 addition
- Four injections of O₃ and NO₂ at the same time, respectively
- Injection of isoprene at the first three O₃/NO₂ injections
- The last O₃/NO₂ injection is to allow for further oxidation of reaction products with NO₃ in this specific experiment

KINETIC MODELLING

- We compare three models:
 - master chemical mechanism (MCM, current version: 3.3.1)
 - CalTech mechanism (Wennberg et. al, Chem. Rev. 2018, 118, 3337–3390), with fill ins from the MCM where no description is given
 - a modified mechanism, based on the OH and O₃ chemistry from MCM, the NO₃ chemistry from CalTech with further adaptations to better fit to the experiments.
- Regarding the NO₃ chemistry, there is a fundamental difference in the approach to the RO₂ description:
 - MCM only has one RO₂ species ISOP1N4OO (see image)
 - CalTech includes three additional RO₂ (1N2OO, 1OO4N and 3OO4N)
 - The new modification in this work introduces O₂ equilibration similar to the OH RO₂, with the equilibrium distribution given by the Boltzmann distribution. Also explicit *cis* species (Z1N4OO and Z4N1OO) as well as isomerisation reactions are added.

MODEL PERFORMANCE - RO₂

- Already the RO₂-yields from pure isoprene ozonolysis show a need for modification.
- Drastic improvement by changing the branching ratios according to Zhang et. al, Chem. Phys. Lett. 2002, 358, 171–179. This includes 95% instead of 56% stabilisation of the formed C1-Criegee Intermediate, halved stabilisation of the "MACROO" CI with increased propene formation and no propene formation from the "MVKOO" CI.
- Theory predicts that not all RO₂ are detectable with our setup, since it relies on HO₂ formation from the alkoxy radical: from the main RO₂ isomer (ISOP1N2OO) decomposition to NO₂+CH₂O+1-butene-3-one takes place instead. CalTech and Modification include corrections for this; uncorrected values are shown as dotted lines, corrected as solid.

Mitglied der Helmholtz-Gemeinschaft

MODEL PERFORMANCE - RO2 (CONTINUED)

Top shows an experiment with large amounts of propene added (70 and 50 ppb, at 7:30 and 9:45) to provide an additional HO₂ source.

Here also a discrepancy in the propene ozonolysis was found and largely mitigated by applying branching ratios from Horie and Moortgat, *Atmos. Env.* **1990**, 25A, 1881–1896, increasing CI stabilisation.

 All modifications together are then able to reproduce the isoprene + NO₃ focussed experiments much more satisfactorily, exemplarily shown here for one day.

Mitglied der Helmholtz-Gemeinschaft

Black: LIF measurement, Red: MCM, Orange: CalTech, Green: Modification Dotted line includes all RO₂, solid line is corrected for undetectable species

MODEL PERFORMANCE - MVK

 MVK as a typical product from isoprene degradation is generally well predicted by MCM, but severely overestimated by CalTech

- The changes to the ozonolysis mechanism also change MVK yields, both directly and by reducing OH concentrations
- Further modifications to the CalTech NO₃ chemistry:
 - change the product branching of the RO₂+RO₂ reactions of the ISOP1N2OO isomer to no longer form MVK
 - change the product branching for ISOP1N2OO+HO₂ to no longer form MVK and correspondingly ISOP3OO4N+HO₂ to no longer form MACR

SUMMARY

- Ozonolysis of both isoprene and propene are not described well enough in the current MCM to match radical measurements
- The new pathway to MVK via ISOP1N2OO + HO₂ in the CalTech mechanism adds to a severe overestimation of MVK from that model
- We actually see no evidence of the ISOP1N2OO RO₂ contributing to prompt formation of MVK
- Oxygen re-equilibration and resulting nascent and equilibrium concentrations of the different RO₂ are crucial for the resulting product distribution in the NO₃ initiated isoprene degradation, as was the case for the OH degradation

I will be available for discussion on Wed., 06.05. from 14:00-15:45! Also: <u>p.carlsson@fz-juelich.de</u>

