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Nitrogen (N) compounds present in the Weser river are contributing 
to the eutrophication of the North sea

[German Environment Agency, 2017]

Largest German‘s national River Basin
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Soil N-surplus, mostly over agricultural areas, is responsible for 
stream nitrate (NO3) pollution in the Weser River basin...

Weser basin at Hemelingen (38 450 km²)
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... but a large fraction of the excess N mass is 
unaccounted for (not found in the stream).

Hemelingen

45% of agricultural land

Hannover

Excess 

N
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Excess N 

58.3 kg ha−1yr−1

Nitrate stream loading 

12.8 kg ha−1yr−1

Denitrification losses 

??? 𝐤𝐠 𝐡𝐚−𝟏𝐲𝐫−𝟏

Δ Soil storage

??? 𝐤𝐠 𝐡𝐚−𝟏𝐲𝐫−𝟏

Δ Groundwater storage

??? 𝐤𝐠 𝐡𝐚−𝟏𝐲𝐫−𝟏

Legacies 

N-mass balance (1981-2015)

• It is critical to understand the build-up

of nitrogen legacy stores over time, as

they can have a large impact on future

stream N loading, and thus

compromise the achievement of

reduction goals for N levels.

• We apply a mechanistic nitrate model

to assess the fate of excess N (lost

through denitrification or stored in the

system – soil or groundwater).

Are soil and groundwater N legacies building up in the Weser basin?
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We use a parsimonious modelling approach: ELEMENT model

• allows for investigation of long term N

trajectories at catchment scale and annual

time scale

• accounts for legacies in soil and groundwater

• three N pools in the soil (organic active,

organic protected and inorganic NO3)

• one N pool in the groundwater (inorganic

NO3)

[Van Meter et al., 2017, Global Biogeochem Cycles]

Parameter Description

𝑀𝑜𝑟𝑔,𝑛 [𝑘𝑔 ℎ𝑎
−1] Soil organic N stock under pristine conditions

𝑏𝑛𝑓𝑛 [𝑘𝑔 ℎ𝑎
−1] N-surplus under pristine conditions (i.e. biological fixation)

ℎ𝑐 [−] Soil organic N protection coefficient for cropland 

ℎ𝑛𝑐 [−] Soil organic N protection coefficient for non-cultivated land use

𝑘𝑎 [𝑦𝑟
−1] Rate of mineralisation for soil active pool

𝑉𝑤 [𝑚𝑚] Mean annual soil water content

λ𝑠 [𝑦𝑟
−1] Rate of denitrification in soil

λ𝑤 [𝑦𝑟−1] Rate of denitrification in groundwater

𝜇 [𝑦𝑟] Mean travel time in groundwater
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We estimate the 9 model parameters using soft rules to account for 
uncertainties in the model inputs and in the output measurements 

Loading ConcentrationSoil 

content

Parameters Outputs 

(performance metrics)

• We reduce the number of behavioural parameter sets by

sequentially applying soft rules, using the SAFE toolbox

for sensitivity analysis (Pianosi et al., 2015).

• We constrain the simulated current soil N content,

stream N loading and stream N concentration.

• For loading and concentration, we select simulations

based on the different components of the Kling Kupta

Efficiency (KGE) (percent bias - PBIAS, standard

deviation error - STD dev. Error, and pearson correlation

coefficient - Correlation).
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We estimate the 9 model parameters using soft rules to account for 
uncertainties in the model inputs and in the output measurements 

Loading ConcentrationSoil 

content

Parameters Outputs 

(performance metrics)

Initial parameter sample                                         100 000 sets

• We reduce the number of behavioural parameter sets by

sequentially applying soft rules, using the SAFE toolbox

for sensitivity analysis (Pianosi et al., 2015).

• We constrain the simulated current soil N content,

stream N loading and stream N concentration.

• For loading and concentration, we select simulations

based on the different components of the Kling Kupta

Efficiency (KGE) (percent bias - PBIAS, standard

deviation error - STD dev. Error, and pearson correlation

coefficient - Correlation).
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We estimate the 9 model parameters using soft rules to account for 
uncertainties in the model inputs and in the output measurements 

Loading ConcentrationSoil 

content

Parameters Outputs 

(performance metrics)

Initial parameter sample                                         100 000 sets

Rule 1: Current soil N content in [8300, 14 000]     40 021 behavioural sets

• We reduce the number of behavioural parameter sets by

sequentially applying soft rules, using the SAFE toolbox

for sensitivity analysis (Pianosi et al., 2015).

• We constrain the simulated current soil N content,

stream N loading and stream N concentration.

• For loading and concentration, we select simulations

based on the different components of the Kling Kupta

Efficiency (KGE) (percent bias - PBIAS, standard

deviation error - STD dev. Error, and pearson correlation

coefficient - Correlation).



@ Authors. All rights reserved. fanny.sarrazin@ufz.de 9www.ufz.de

We estimate the 9 model parameters using soft rules to account for 
uncertainties in the model inputs and in the output measurements 

Loading ConcentrationSoil 

content

Parameters Outputs 

(performance metrics)

Initial parameter sample                                         100 000 sets

Rule 1: Current soil N content in [8300, 14 000]     40 021 behavioural sets

Rule 2: Loading PBIAS ≤ 20%                               6387 behavioural sets

• We reduce the number of behavioural parameter sets by

sequentially applying soft rules, using the SAFE toolbox

for sensitivity analysis (Pianosi et al., 2015).

• We constrain the simulated current soil N content,

stream N loading and stream N concentration.

• For loading and concentration, we select simulations

based on the different components of the Kling Kupta

Efficiency (KGE) (percent bias - PBIAS, standard

deviation error - STD dev. Error, and pearson correlation

coefficient - Correlation).
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We estimate the 9 model parameters using soft rules to account for 
uncertainties in the model inputs and in the output measurements 

Loading ConcentrationSoil 

content

Parameters Outputs 

(performance metrics)

Initial parameter sample                                         100 000 sets

Rule 1: Current soil N content in [8300, 14 000]     40 021 behavioural sets

Rule 2: Loading PBIAS ≤ 20%                               6387 behavioural sets

Rule 3: Loading STD dev. error ≤ 50%                 6381 behavioural sets

Rule 4: Loading Correlation ≥ 0.6                               3327 behavioural sets   

Rule 5: Concentration PBIAS ≤ 20 %                   2806 behavioural sets

Rule 6: Concentration STD dev. error ≤ 50 %      643 behavioural sets

Rule 7: Concentration Correlation ≥ 0.6                      643 behavioural sets

• We reduce the number of behavioural parameter sets by

sequentially applying soft rules, using the SAFE toolbox

for sensitivity analysis (Pianosi et al., 2015).

• We constrain the simulated current soil N content,

stream N loading and stream N concentration.

• For loading and concentration, we select simulations

based on the different components of the Kling Kupta

Efficiency (KGE) (percent bias - PBIAS, standard

deviation error - STD dev. Error, and pearson correlation

coefficient - Correlation).

Selected sets
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The behavioural simulation ensemble captures the observed stream 
NO3 loading and concentration
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The behavioural simulations allows to estimate the different 
components of the N mass balance.
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Increase in storage 

(Δ Storage > 0)

Decrease in storage 

(Δ Storage < 0)

• The excess N mass largely denitrifies.

• The soil N storage is increasing, while the

groundwater storage only shows limited variations.
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Conclusions and outlook

• ELEMENT is able to reproduce the observed

stream NO3 loading and concentration in the

Weser basin at Hemelingen.

• We separate the excess N into the different

components (denitrification, stream loading and

storage change), despite the uncertainty that

remains after parameter estimation (due to

equifinality).

• Simulations show that large part of N is denitrified

(around 63% of excess N), but a substantial part is

also stored in the soil.

• Future works will focus on different subbasins of

the Weser to understand how the fate of the

excess N varies spatially.

Excess N 

58.3 kg ha−1yr−1

)

Nitrate stream loading 

12.9 kg ha−1yr−1

(95% CI: [12.0, 14.2]) 

Denitrification losses 

36.5 𝐤𝐠 𝐡𝐚−𝟏𝐲𝐫−𝟏

(95% CI: [33.9  39.2])

Δ Soil storage

8.2 𝐤𝐠 𝐡𝐚−𝟏𝐲𝐫−𝟏

(95% CI: [6.0,10.4])

Δ Groundwater storage

-0.2 𝐤𝐠 𝐡𝐚−𝟏𝐲𝐫−𝟏

(95% CI: [-0.5, 0])

N mass balance for the Weser basin 

at Hemelingen (1981-2015)
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Source of the data used for parameter estimation and references

• Source of the data used for the parameter estimation

Stream NO3 concentration observations for the Weser at Hemelingen was obtained from the Flussgebietsgemeinschaft (FGG) Weser

data bank (https://datenbank.fgg-weser.de/weserdatenbank/#/).

Current soil N content observations for the Weser at Hemelingen was estimated from the LUCAS dataset (Ballabio et al., 2016, 2019)

available from the ESDAC (European Soil Data Centre, esdac.jrc.ec.europa.eu, European Commission, Joint Research Centre).

• References

Ballabio C., Panagos P., Montanarella L. (2016). Mapping topsoil physical properties at European scale using the LUCAS database.

Geoderma. 261. 110–123.

Ballabio, C., Lugato, E., Fernández-Ugalde, O., Orgiazzi, A., Jones, A., Borrelli, P., Montanarella, L. and Panagos, P. (2019). Mapping

LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma, 355. 113912.

German Environment Agency (2017). Waters in Germany: Status and assessment. Dessau-Roßlau.

Pianosi, F., Sarrazin, F., Wagener, T. (2015). A Matlab toolbox for Global Sensitivity Analysis, Environmental Modelling & Software. 70.

80–85 (www.safetoolbox.info).

Van Meter, K. J., Basu, N. B., & Van Cappellen, P. (2017). Two centuries of nitrogen dynamics: Legacy sources and sinks in the

Mississippi and Susquehanna River Basins. Global Biogeochemical Cycles. 31(1). 2–23.


