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COSMO



How can we best characterize uncertainty of the convection 
permitting model for data assimilation and ensemble 
forecasting?

Our goals:

Ø Improvement of short term forecast up to 6h

Ø Better use of radar reflectivity data



Methods

Ø Parameter estimation (Ruckstuhl and Janjic, MWR 2020),EGU2020-7163

Ø Stochastic boundary layer perturbations (Kober and Craig, JAS,2016)

Ø Warm bubble (Zeng et al. 2020, MWR)

Ø Additive noise (Zeng et al. 2019, JAMES) will be primarily presented.



Ø Kilometer-Scale Ensemble Data Assimilation 
(KENDA, Schraff et al. 2016) based on LETKF
(Hunt et al. 2007)

Ø 40-member COSMO ensemble with ICON lateral boundary conditions

Ø Each member consists of the prognostic variables of velocity, 
temperature, pressure perturbation, specific humidity, cloud water and 
ice, rain, snow, and graupel.

Ø 1h updates using conventional data + radar reflectivity

Ø LETKF also for radar reflectivity, using forward operator EMVORADO 
(Zeng et al. 2016)



for unresolved scales model error samples calculated as difference between 
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Experimental design:

Period: 2 week period starting 00:00 UTC 27 May 2016, strong and weak 
forcing

Size of ensemble: 40 members for DA
20 members are used for 6-h ensemble forecasts, initiated at 
10, 11, …, 18:00 UTC
Observation error: 10 dBZ for reflectivity    



Experimental design:

ELAN

velocity u, v, temperature, pressure and relative humidity qv are perturbed

tuned to 0.1, = 0

ESAN

velocity u, v, w temperature and relative humidity qv are perturbed
using randomly chosen sample from historical data base

0, = 1.25
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E SAN1.25 vs. E LAN0.10
E LAN0.10 vs.
E LAN0.10SAN1.25NW

E LAN0.10SAN1.25NW 
vs. E LAN0.10SAN1.25

Relative difference of CRPS in percentage. Weak forcing conditions. 
Green is better



E SAN1.25 vs. E LAN0.10
E LAN0.10 vs.
E LAN0.10SAN1.25NW

E LAN0.10SAN1.25NW vs. 
E LAN0.10SAN1.25

Relative difference of CRPS in percentage. Strong forcing conditions
Green is better
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Ø Start forming bubbles in areas where radar observations show a convective
cell, but there is none in model 15 min before assimilation time in each
ensemble member.

Ø Bubbles warm an area~10x10kmx2km with ~0.01 K/s, in period of 15 minutes.

Ø Depending on dynamical conditions in each member, cells may or may not 
develop. Note assimilation hourly using only last 5 min of radar data.

Warm bubble in DA
(Zeng et al. 2020, MWR)



Physically based Stochastic Perturbations
scheme (PSP, Kober and Craig 2016)

ELAN0.1SAN1.25P = ELAN0.1SAN1.25 +PSP

ELAN0.1SAN1.25B = ELAN0.1SAN1.25 +Warm Bubble

ELAN0.1SAN1.25 represents model error only via climatological 
information
It was also combined with PSP or warm bubble (Zeng et al. 2020)



Warm bubble in DA, adds new cells missing in the model and therefore time 
dependent information. 
PSP also adds regime dependent information during DA.

Both further improve FSS scores.



Roughness length estimation (Rucktuhl and Janjic 2020), 
EGU2020-7163



Conclusion

Ø The higher resolution models are able to resolve strongly nonlinear 
dynamics and start to resolve physical processes that have 
traditionally been parameterized such as, for example, convection.  

Ø However model error still exists.

Ø Small-scale additive noise based on model truncation error improves 
large-scale additive inflation for short-term precipitation forecast.

Ø Further improvement can be obtained by adding time variable 
information from data or on weather regime.

Ø Can we do better through improvements in additive noise algorithm?
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FSS for a fixed treshold value (of

reflectivity or rain) and resolution

Ø Fraction Skill Score (FSS, Roberts & Lean, 2008)

Pobs= 6/25 Pfcst = 6/25

Figure from M.Hoff, DWD

Ø Continuous ranked probability 

score (CRPS, Hersbach 2000)

Ø False alarm rate FAR ratio of 

false alarms to sum of false 

alarms and  hits for a fixed 

treshold values



RTPP scheme with 0.75 (Zhang et al 2004)

Additive noise with samples from ICON’s B matrix with 0.1

RTPS scheme with 0.95 (Whitaker and Hamill 2012) 

Whitaker and Hamill 2012, using two-level primitive equation global model: “when model 
error is the dominant source of unrepresented background errors, additive inflation alone 
outperforms any combination of RTPS and additive inflation.”

Similar conclusion Zeng et al, JAMES 2018



Histogram of small scale model error samples 
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