

Representation of model error in convective scale data assimilation

Tijana Janjic^a , Y. Zeng^a, Y. Ruckstuhl^a, M. Sommer^a Alberto de Lozar^b, Ulrich Blahak^b, Axel Seifert^b

^aMeteorologisches Institut, Ludwig-Maximilians Universität (LMU), Munich

^bDeutscher Wetterdienst, Offenbach, Germany

How can we best characterize **uncertainty of the convection permitting model** for data assimilation and ensemble forecasting?

Our goals:

- Improvement of short term forecast up to 6h
- Better use of radar reflectivity data

Methods

- Parameter estimation (Ruckstuhl and Janjic, MWR 2020), EGU2020-7163
- Stochastic boundary layer perturbations (Kober and Craig, JAS, 2016)
- ➤ Warm bubble (Zeng et al. 2020, MWR)
- > Additive noise (Zeng et al. 2019, JAMES) will be primarily presented.

- Kilometer-Scale Ensemble Data Assimilation (KENDA, Schraff et al. 2016) based on LETKF (Hunt et al. 2007)
- ➢ 40-member COSMO ensemble with ICON lateral boundary conditions
- Each member consists of the prognostic variables of velocity, temperature, pressure perturbation, specific humidity, cloud water and ice, rain, snow, and graupel.
- Ih updates using conventional data + radar reflectivity
- LETKF also for radar reflectivity, using forward operator EMVORADO (Zeng et al. 2016)

 $\eta^{(i)s}$ for unresolved scales model error samples calculated as difference between COSMO 2.8 km and 1.4 km offline for a different historical time

Samples calculated for historic case in 2014

Properties of model error samples

Experimental design:

Period: 2 week period starting 00:00 UTC 27 May 2016, strong and weak forcing

Size of ensemble: 40 members for DA 20 members are used for 6-h ensemble forecasts, initiated at 10, 11, ..., 18:00 UTC **Observation error:** 10 dBZ for reflectivity

$$\mathbf{x}^{a(i)} \leftarrow \mathbf{x}^{a(i)} + \alpha_a \boldsymbol{\eta}^{(i)} + \alpha_a^{\mathsf{s}} \boldsymbol{\eta}^{(i)\mathsf{s}}$$

ELAN

 $\eta^{(i)}$

velocity u, v, temperature, pressure and relative humidity qv are perturbed

$$\alpha_a$$
 tuned to 0.1, $\alpha_a^s = 0$

ESAN

 $\eta^{(i)s}$ velocity u, v, w temperature and relative humidity qv are perturbed using randomly chosen sample from historical data base

$$\alpha_a$$
 0, $\alpha_a^s = 1.25$

ELAN0.1SAN1.25 combination ELAN0.1SAN1.25NW experiment in which w is not perturbed

E SAN1.25 vs. E LAN0.10

E LAN0.10 vs. E LAN0.10SAN1.25NW

E LAN0.10SAN1.25NW vs. E LAN0.10SAN1.25

Relative difference of CRPS in percentage. Weak forcing conditions. Green is better

E SAN1.25 vs. E LAN0.10

E LAN0.10 vs. E LAN0.10SAN1.25NW

E LAN0.10SAN1.25NW vs. E LAN0.10SAN1.25

Relative difference of CRPS in percentage. Strong forcing conditions Green is better

12:00 06 June, 2016

Obs

E LAN0.10

E LAN0.10SAN1.25

1. Column: Reflectivity composite

2.&3. Columns: What percent of ensemble members exceed 20 dBZ

Start forming bubbles in areas where radar observations show a convective cell, but there is none in model 15 min before assimilation time in each ensemble member.

Bubbles warm an area~10x10kmx2km with ~0.01 K/s, in period of 15 minutes.

Depending on dynamical conditions in each member, cells may or may not develop. Note assimilation hourly using only last 5 min of radar data.

Physically based Stochastic Perturbations scheme (**PSP**, Kober and Craig 2016)

$$\left(\frac{\partial \Phi}{\partial t}\right)_{\text{total}} = \left(\frac{\partial \Phi}{\partial t}\right)_{\text{param}} + \alpha_{\text{tuning}} \eta \frac{1}{\tau_{\text{eddy}}} \frac{l_{\text{eddy}}}{\Delta x_{\text{eff}}} \sqrt{\overline{\Phi'^2}}$$

 $\Phi \in T, q_v, w; \ \tau_{\text{eddy}} = 10 \text{ minutes}; \ \Delta x_{\text{eff}} = 5\Delta x, \ \alpha_{\text{tuning}} = 7.2; \ l_{\text{eddy}} = 1 \text{ km}$
 $\sqrt{\overline{\Phi'^2}} \text{ is the subgrid standard deviation}; \ \eta \text{ is a two-dimensional random field}$

ELAN0.1SAN1.25 represents model error only via climatological information It was also combined with PSP or warm bubble (Zeng et al. 2020)

ELAN0.1SAN1.25P = ELAN0.1SAN1.25 +PSP ELAN0.1SAN1.25B = ELAN0.1SAN1.25 +Warm Bubble

Warm bubble in DA, adds new cells missing in the model and therefore time dependent information.

PSP also adds regime dependent information during DA.

Both further improve FSS scores.

Roughness length estimation (Rucktuhl and Janjic 2020), EGU2020-7163

- The higher resolution models are able to resolve strongly nonlinear dynamics and start to resolve physical processes that have traditionally been parameterized such as, for example, convection.
- However model error still exists.
- Small-scale additive noise based on model truncation error improves large-scale additive inflation for short-term precipitation forecast.
- Further improvement can be obtained by adding time variable information from data or on weather regime.
- > Can we do better through improvements in additive noise algorithm?

References

Zeng, Y., T. Janjic, A. de Lozar, S. Rasp, U. Blahak, A. Seifert, G. C. Craig, 2020, Comparison of methods accounting for subgrid-scale model error in convective-scale data assimilation, Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-19-0064.1.

Zeng Y., T. Janjic, M. Sommer, A. de Lozar, U. Blahak, A. Seifert, 2019, Representation of model error in convective-scale data assimilation: additive noise based on model truncation error, JAMES, 11, 752–770.

Zeng. Y. T. Janjic, A. de Lozar, U. Blahak, H. Reich, C. Keil, A. Seifert, 2018, Representation of model error in convective-scale data assimilation: Additive noise, relaxation methods and combinations, JAMES, 10, 2889–2911.

Gustafsson, N, Janjić, T, Schraff, C, et al. Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Q J R Meteorol Soc. 2018; 144: 1218-1256.

Kober, K., G.C.Craig, 2016: Physically-based stochastic perturbations (PSP) in the boundary layer to represent uncertainty in convective initiation, J. Atmos. Sci., 73, 2893-2911.

Sommer, M. and T. Janjic, 2018, A flexible additive inflation scheme for treating model error in Ensemble Kalman Filters, Q. J. R. Meteorol. Soc., 144, 2026-2037.

Ruckstuhl Y. and T. Janjic, 2020, Combined state-parameter estimation with the LETKF for convective-scale weather forecasting, Mon. Wea. Rev., Mon. Wea. Rev., 148, 1607–1628. Schraff, C., H. Reich, A. Rhodin, A. Schomburg, K. Stephan, A. Perianez, and R. Potthast, 2016: Kilometre-scale ensemble data assimilation for the Cosmo model (KENDA). Quart. J. Roy. Meteor. Soc., 142, 1453–1472.

Whitaker, J. S. and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140(9), 3078–3089.

Fraction Skill Score (FSS, Roberts & Lean, 2008)

FSS for a fixed treshold value (of reflectivity or rain) and resolution

$$FSS = 1 - \frac{\frac{1}{N} \sum_{i=1}^{N} (P_{fcst} - P_{obs})^2}{\frac{1}{N} \sum_{i=1}^{N} P_{fcst}^2 + \frac{1}{N} \sum_{i=1}^{N} P_{obs}^2}$$

- Continuous ranked probability score (CRPS, Hersbach 2000)
- False alarm rate FAR ratio of false alarms to sum of false alarms and hits for a fixed treshold values

Figure from M.Hoff, DWD

RTPP scheme with 0.75 (Zhang et al 2004)

$$\mathbf{X}^a \leftarrow (1 - \alpha_p) \mathbf{X}^a + \alpha_p \mathbf{X}^b$$

Additive noise with samples from ICON's B matrix with 0.1

$$\mathbf{x}^{a(i)} \leftarrow \mathbf{x}^{a(i)} + \alpha_a \boldsymbol{\eta}^{(i)} \qquad \boldsymbol{\eta}^{(i)} = \tilde{\mathbf{B}}^{\frac{1}{2}} \boldsymbol{\gamma}$$

RTPS scheme with 0.95 (Whitaker and Hamill 2012)

$$\sigma^{a} \leftarrow (1 - \alpha_{s})\sigma^{a} + \alpha_{s}\sigma^{b} \qquad \mathbf{X}^{a} \leftarrow \left(\alpha_{s}\frac{\sigma^{b} - \sigma^{a}}{\sigma^{a}} + 1\right)\mathbf{X}^{a}$$

Whitaker and Hamill 2012, using two-level primitive equation global model: "when model error is the dominant source of unrepresented background errors, additive inflation alone outperforms any combination of RTPS and additive inflation."

Similar conclusion Zeng et al, JAMES 2018

Histogram of small scale model error samples

