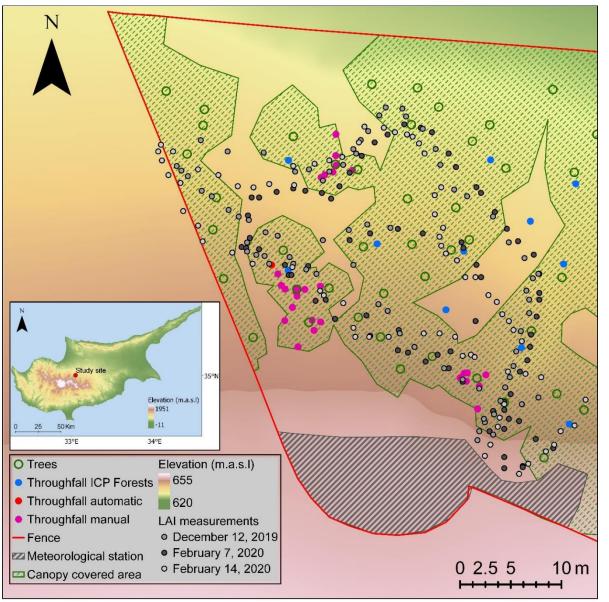
How sensitive are rainfall interception models to the canopy parameters of semi-arid forests? Marinos Eliades¹, Adriana Bruggeman¹, Hakan Djuma¹, Maciek W. Lubczynski²

> ¹Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus ²University of Twente, ITC, Enschede, Netherlands

Introduction:

• Rainfall interception: 6 – 45% of the gross rainfall


- Rainfall interception models: rely on plant parameters
- Canopy storage capacity (S)
- Canopy cover fraction (c)
- Objective: Examine the sensitivity of three commonly used rainfall interception models (Rutter, Gash and Liu) to the canopy storage capacity (S) and to the canopy cover fraction (c)

<u>Study site Pinus brutiu ibrest, Cyprus</u>						
Elevation (m)	620 -655					
Mean slope (degrees)	25					
Aspect	North					
Forest density (trees ha ⁻¹)	200					
Average annual rainfall (mm)	425					
Minimum annual rainfall (mm)	169 (2007/2008)					
Maximum annual rainfall (mm)	725 (2018/2019)					
Daily max. temperature (C°)	34 (July)					
Daily min. temperature (C°)	4 (January)					

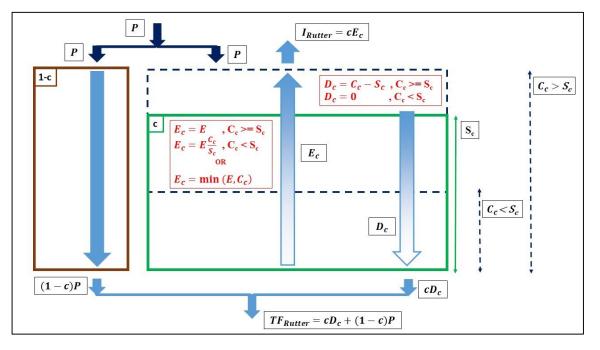
Study site^{1,2}. Pinus hrutia forest Cyprus

¹Eliades, M., Bruggeman, A., Lubczynski, M.W., Christou, A., Camera, C., Djuma, H., 2018. J. Hydrol. 562, 712–724.
²Eliades, M., Bruggeman, A., Djuma, H., Lubczynski, M., 2018. Water 10, 1039.

Methodology:

Period 2016 - 2019

- 1 meteorological station (hourly)
- 28 manual throughfall gauges (after rainfall)
- 1 automatic throughfall gauge (hourly)
- Leaf area index
- 80 test runs per model: examine the effect of S and c onto the model performance
- Optimized parameters Sensitivity analysis
- Model evaluation: Kling-Gupta efficiency (KGE) and percent bias (%)


Period 2008 - 2018

- 15 ICP forests¹ throughfall gauges (weekly)
- Rainfall (daily)

¹International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests)

Methodology:

• Rutter model

Gash model

$$I_{Gash} = c \sum_{j=1}^{m} P_j + c(nP_s) + c \frac{\overline{E}_c}{\overline{R}} \sum_{i=1}^{n} (P_i - P_s)$$

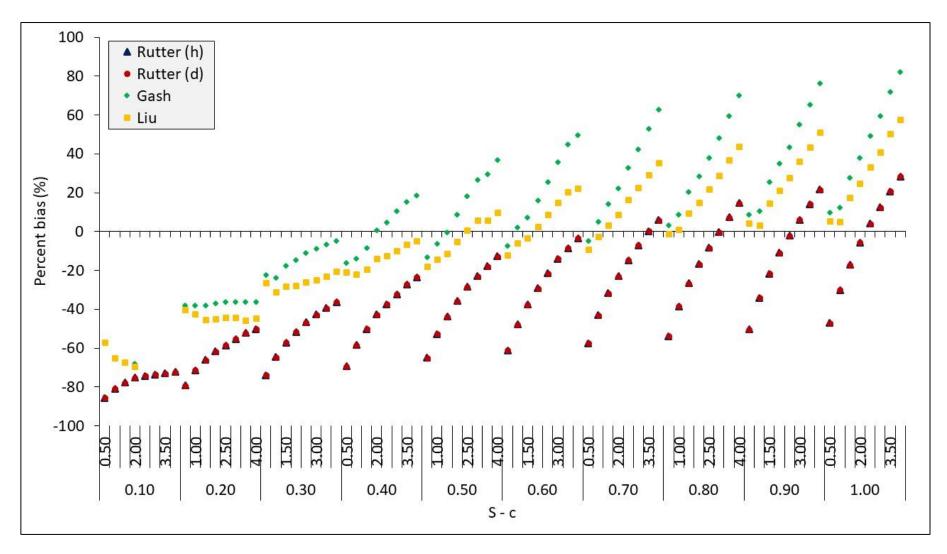
Liu model

$$I_{Liu} = c \left\{ S_c \left[1 - exp \left(-\frac{c}{s}P \right) \right] \left[1 - \frac{\overline{E}_c}{\overline{R}} \right] + \frac{\overline{E}_c}{\overline{R}}P \right\}$$

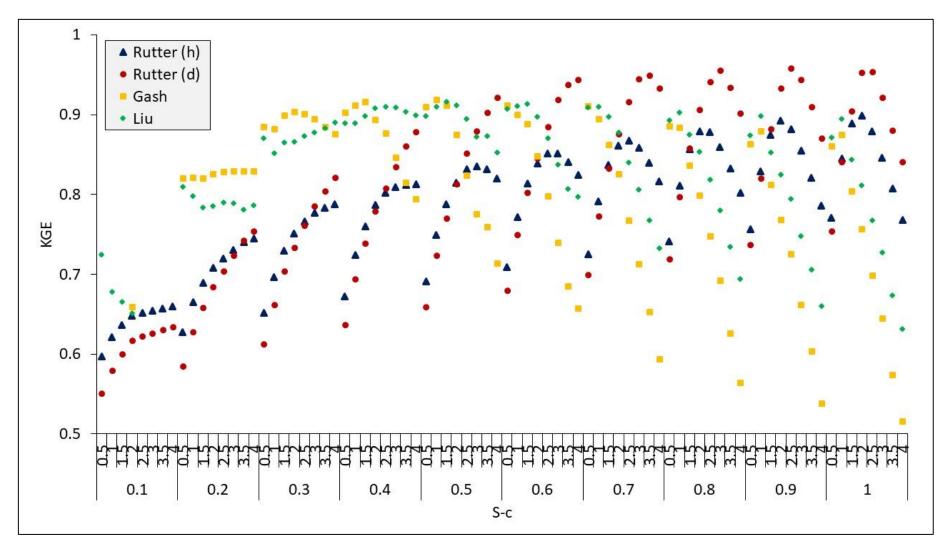
C_c: Water storages on the canopy surface (mm)

- P: Rainfall (mm)
- E: Potential evaporation (mm)
- E_c: Actual evaporation (mm)
- D_c: Canopy drainage (mm)
- S_c : Storage capacity of the canopy cover area (S /c) (mm) c: Canopy cover fraction

 P_j : Rainfall - m small rain events, insufficient to saturate the canopy (P < P_s)


 P_i : Rainfall - n large events that saturate the canopy ($P \ge P_s$)

- P_s: Amount of water needed to saturate the canopy (mm)
- R: Mean rainfall rate (mm h⁻¹)


 \bar{E}_{c} : Mean evaporation rate from the canopy area (\bar{E}/c), (mm h^{-1})

Gash, J.H.C., 1979. Q. J. R. Meteorol. Soc. 105, 43–55. Gash, J.H.C., Lloyd, C.R., Lachaud, G., 1995. J. Hydrol. 170, 79–86. Carlyle-Moses, D.E., Price, A.G., 2007. Hydrol. Process. 21, 2572–2580. Liu, S., 1997. Ecol. Modell. 99, 151–159. Rutter, A.J., Kershaw, K.A., Robins, P.C., Morton, A.J., 1971. Agric. Meteorol. 9, 367–384. Valente, F., David, J.S., Gash, J.H., 1997. J. Hydrol. 190, 141–162.

• Model performance (given by the KGE) of the three models (Rutter hourly and daily, Gash and Liu) with changing canopy cover fraction (c) and storage capacity (S)

• Percent bias between modelled and observed interception loss of the three models (Rutter hourly and daily, Gash and Liu) with changing canopy cover fraction (c) and storage capacity (S)

• Sensitivity analysis:

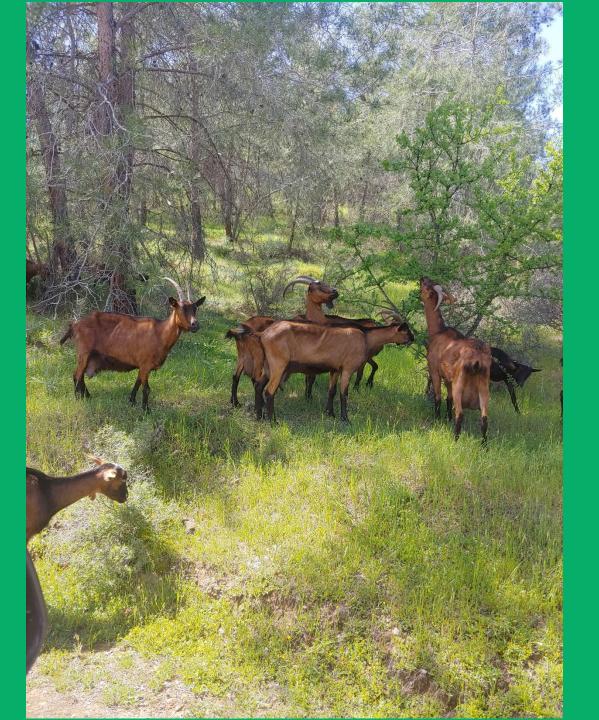
Percent change of the input parameter S (dS/S) and c (dc/c) and the relative change to the model output for S (O(S)) and c (O(c))


• Optimized parameters

Parameters	Rutter	Gash	Liu
S	2.23	1.43	1.37
С	1.00	0.40	0.57
E	0.07	0.07	0.07
R	0.37	0.44	0.40

%	Rutter		Gash		Liu	
dS/S, dc/c	O (S)	O (c)*	O (S)	O (c)	O (S)	O (c)
20	8		6	11	3	7
10	4		3	6	1	5
5	2		1	4	1	4
-5	-2	-3	0	-2	1	-1
-10	-5	-6	-1	-5	0	-2
-20	-10	-12	-3	-13	0	-7

*Positive changes to the model output were not computed because the optimum c was at the maximum (1).


• Rainfall interception (I_measured, I_Gash and I_Liu) and model performance (KGE Gash and Liu) per year

Conclusions:

- The Rutter model outperformed Gash and Liu models
- Gash and Liu had similar long-term model performance
- All models were more sensitive to changes in c than to changes in S
- A range of canopy parameter values achieve similar high rainfall interception model performance

Thank you!

Contact: Marinos Eliades m.eliades@cyi.ac.cy www.cyi.ac.cy

