

A parametric insurance framework based on remote-sensing observations to mitigate drought impacts through risk financing <u>B. Monteleone¹, M. Martina¹, B. Bonaccorso²</u> ¹Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy ²Dipartimento di Ingegneria, Università di Messina

USS

Drought impacts

Drought affects various economic sectors

Agriculture

Livestock

Power generation

Tourism

First economic sector affected by drought

	Rainfed	Irrigated
Cropped area	75%*	25%*
Total crop production	60%**	37%**

Management strategies

*Fekete, 2013 ** UNESCO, 2009

How to manage drought

- Post impact interventions: relief measures
- Pre-impact measures = mitigation:
 - Early-warning
 - Water demand reduction
 - Economic instruments

Insurance:

- Indemnity-based
- Index-based (parametric)

Index-based insurance

What is index insurance?

A coverage based on an index correlated with farmer's losses

Weather based index (Growing season rainfall)

Satellite based index (Vegetation health)

A hard a

Farmers get paid if and only if the index falls above or below a specified threshold. The scheme must:

Index-based insurance: pros and cons

- Farmers cannot influence the index value
- Payouts based on observed variables (Indices)
- Low administration costs
- Fast and reliable funding after disaster

- Farmers can receive a payout even if they suffered no losses (basis risk)
- Farmers can suffer losses and receive no payout (basis risk)
- Reason: imperfect correlation between index and yields

Aim and steps

Development of a drought loss index to be implemented in the context of an index-based insurance framework against drought

implemen t a new remotesensing drought index develop a framework to identify drought events in an objective way ∽ link
 reduction in
 crop yields
 with drought
 in crop
 growth
 periods

 ✓ derive a drought loss index to be applied in an index insurance framework

Composite drought index

Datasets

CHIRP Satellite based 30+ years of records 0.05° spatial resolution Global coverage

Rainfall

Vegetation

Health

Global VHP from NOAA

- Satellite based
- 37 years of records
- 4km spatial resolution
- Global coverage

PPVI drought classification

SPI and VHI combined through a bivariate normal distribution function

Category	PPVI
Extremely wet	I.04 and above
Severely wet	0.58 to 1.03
Moderately wet	0.13 to 0.57
Near normal	-1.68 to 0.12
Moderately dry	-2.14 to -1.69
Severely dry	-2.15 to -2.59
Extremely dry	-2.6 and below

Monteleone et al., 2020

2. Drought event

Start if more than NI cells in drought End if less than N2 cells in drought

Case study

Haiti

- Area:27,750 km²
- Population: 10.98 million
- Agricultural area: 67%
- Irrigated: 4.35%

The Dominican Republic

- Area: 48,671 km²
- Population: 10.77 million
- Agricultural area: 49%
- Irrigated: 17%

Various combinations of S_1, S_2, N_1 and N_2 tested for each index

Crop growth periods

Considered crops (Dominican Republic):

Crop yield anomaly

Œ

Crop data from FAOSTAT, aggregated at contry level on a yearly

> Significant crop negative anomaly

Drought occurrence in growth stages

Drought and crop yield

---- P(BY|D) ---- P(BY)

Growth period	$W_{sorghum}$	
Establishment	0.13	
Vegetative	0.21	
Flowering	0.26	
Yield formation	0.39	

Loss index curve

8.0 x 0.8 ludex 0.6 loss 0.4 0.2 loss 0.4 0.2 loss 0.4 0.2 loss 0.2 los 0.2 los 0.2 loss 0.2 los 0.2 los 0.2 los 0.2 los 0.2 los

Conclusions

- Many **advantages** related to **PPVI** (remotesensing, easily transferable, composite index)
- Good performance of the framework to identify drought events
- Need of a better way to identify growth periods in drought
- Need to improve the method to compute the loss index

Thanks for your attention

beatrice.monteleone@iusspavia.it

