Altitude as an indicator of biased sampling design in landslide susceptibility mapping ?

Andrei Dornik, Lucian Drăguț, Takashi Oguchi, Yuichi Hayakawa, Mihai Micu

© Authors. All rights reserved

EGU2020: Sharing Geoscience Online

OBJECTIVES

Main goal: to evaluate the sensitivity of landslide susceptibility modelling (LSM) to sampling in heterogeneous areas.

Hypotheses:

- 1. random sampling of the landslide absence data in such areas can lead to erroneous distributions of predictors.
- 2. altitude might points out issues in sampling design when appears as a main predictor in landslide modeling.

STUDY AREAS

Two study areas, with landslide inventories available:

- 1. In the Buzău County, Romania
- 2. In the Shizuoka Prefecture, Japan

Each study area was split in **distinct domains**, defined by **geological/ lithological** units that reflect homogeneous topographies.

The tests were conducted as following:

1. Within entire study area – **lithologically heterogeneous** (named B and J)

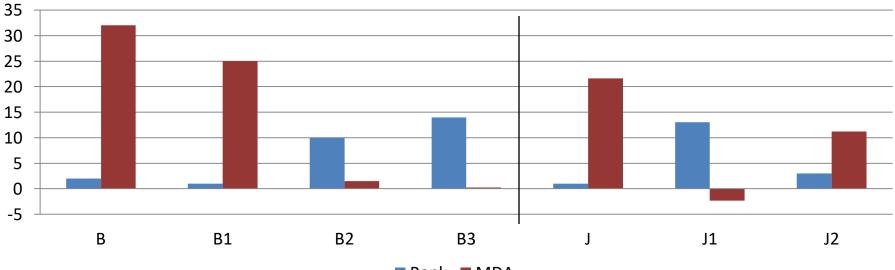
2. Within each **lithologically homogeneous domain** (named B1, B2, B3 and J1, J2)

METHODS

We train a **Random Forest (RF)** model with 14 terrain variables as predictors, in two sampling strategies:

- 1) one random point allocation within each landslide scarp polygon and the same number of points randomly created outside landslide scarp area, as absence data
- 2) Random sampling of representative number of points within landslide scarps (at least one point per scarp) and the same number of points randomly created outside landslide scarps
 - Representative number of samples is 10000 in Buzau and 6000 in Shizuoka, 50 % as presence and 50 % as absence.

The results are compared both quantitatively and relative to their geomorphic plausibility.


1) one random point allocation within each landslide scarp polygon

Study area	Number of samples	OOB	AUC	OA	Карра
В	1154	0.30	0.77	0.73	0.45
B1	204	0.26	0.81	0.77	0.54
B2	220	0.36	0.74	0.70	0.39
B3	220	0.30	0.78	0.75	0.50
J	714	0.29	0.78	0.72	0.44
J1	220	0.32	0.84	0.75	0.50
J2	220	0.29	0.82	0.77	0.54

OOB - Out-of-bag error; AUC - Area Under The Curve; OA – overall accuracy; Kappa – kappa index of agreement

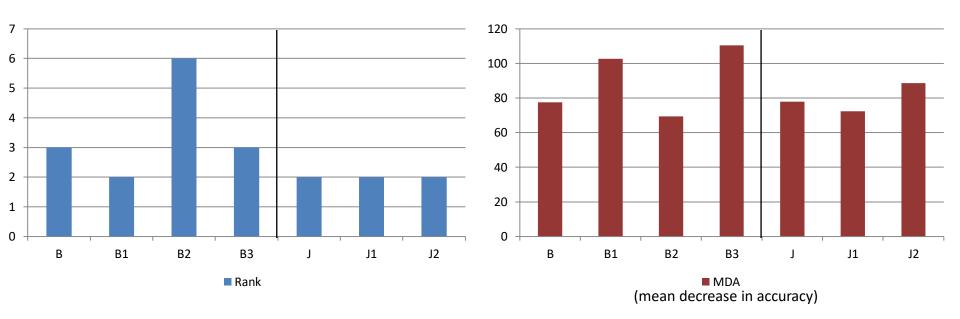
The results show that in four out of five cases the **lithologically stratified** random sampling significantly improved the prediction.

1) one random point allocation within each landslide scarp polygon

Variable importance of elevation

Rank MDA (mean decrease in accuracy)

- variable importance analysis show that variable hierarchy changed significantly when using lithological stratified sampling
- Elevation decreased in importance in lithological domains
- very high variation observed as repeating the procedure (100 times)
 - Low confidence
 - Unrepresentative number of samples
- This result led to the second sampling strategy


2) Random sampling of **representative number of points**

Study area	Number of samples	OOB	AUC	OA	Карра
В	10000	0.26	0.82	0.75	0.49
B1	10000	0.20	0.90	0.81	0.62
B2	10000	0.26	0.83	0.75	0.50
B3	10000	0.18	0.91	0.83	0.66
J	6000	0.19	0.89	0.81	0.63
J1	6000	0.23	0.87	0.79	0.57
J2	6000	0.14	0.94	0.87	0.73

OOB - Out-of-bag error; AUC - Area Under The Curve; OA – overall accuracy; Kappa – kappa index of agreement

- in four out of five cases the lithologically stratified random sampling of representative number of points improved the prediction.

2) Random sampling of representative number of points

- variable hierarchy changed significantly when using lithological stratified sampling
- Elevation remains an important predictor, even more important in B1
- Very low variation was observed as repeating the procedure (20 times)
 - High confidence

CONCLUSIONS

- Landslide modeling is highly sensitive to sampling the absence data
- Accuracy measures improved when sampling in lithologically homogeneous domains, as compared to heterogeneous areas
- Altitude was still an important predictor although its geomorphic plausibility is questionable
- One point/scarp and equal number of absences is not recommended