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Background
•Global ocean models incur exceptional computational expense.
•Therefore models must be run at low resolutions, and effects of small scales

parameterised.
•We want to use a stochastic parameterisation added in such a way that does

not destroy the fundamental physics of fluid dynamics.
•SALT (stochastic advection by Lie transport) is a method that does this (see

[Hol15], [SC20]).
•We consider the ocean model FESOM2.0, see [DSWJ16].
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Differences in flow solution as we change resolution
•One field in which we can see clear differences when we change the resolution

is kinetic energy. elow we plot kinetic energy field snapshots for resolutions of
1/2◦, 1/4◦, 1/8◦ and 1/16◦.

•As we increase the resolution, we see a stronger kinetic energy jet emerging
from the western boundary. This kind of feature is what an effective param-
eterisation scheme should capture.

Lagrangian Paths
•A fluid is made up of a continuum of particles, each following a trajectory

determined by the velocity field. To capture uncertainty we add a stochastic
part to the particle trajectory:

dtxt = u(xt, t)dt +
∑
i

ξi(xt) ◦ dW i
t (1)

•We determine the ξi by taking the velocity field of a simulation on the fine
grid, uf . We then coarse-grain this solution by filtering, to get a smooth field
u. We then calculate the Lagrangian trajectories for each of the fields and
look at the difference (see [CCH+18]):

•We use these trajectories to calculate:

∆X = xf(t)− x(t) ≈
∑
n

u(xnf , tn)∆t−
∑
m

u(xm, Tm)∆T (2)

•The ξi are calculated as re-scaled EOFs of the field ∆X .
•An alternative simple approach is to take the difference in velocity fields:

∆X = (uf(x, t)− u(x, t))∆T (3)

Variational Principles for stochastic Fluids
To use the stochastic Lagrangian paths in a way that preserves the properties
of the flow, we use a variational principle involving the following action:

S =

∫ T

0

l(u,D, T )︸ ︷︷ ︸ dt + ⟨dtP,D − 1⟩︸ ︷︷ ︸
incompressibility

+

⟨
π, dxt − u(xt, t)dt−

∑
i

ξi(xt) ◦ dW i
t

⟩
︸ ︷︷ ︸

Lagrangian particle paths

(4)

The Lagrangian l contains information about the kinetic and potential energy
of the system. For the primitive equations it is given by:

l(u,D, T ) =

∫
V

(
1

2
|u|2 +R · u−

∫ z

z0

(1 +B(T (x, z, t), z′)) dz′
)
d3x (5)

This consists of kinetic energy 1
2 |u|

2, rotation R · u and potential energy∫ z

z0
(1 +B(T (x, z, t), z′)) dz′, where T is potential temperature and B comes

from the equation of state, ρ′/ρ0 = B(T, z).
Deriving the equations in this way preserves important physical properties such
as circulation and potential vorticity:

dt

∮
C(t)

(u +R) · dx = (g/ρ0)

∫∫
S(t)

k̂×∇ρ′ · dSdt (6)

dtq + dxt · ∇q = 0 q = ∇T · (curlu + f k̂) (7)

Primitive Equations with SALT
The primitive equations with the SALT method are given by:

dtu +
[
u3 · ∇3u + f k̂× u +∇p

]
dt +

∑
i

Gi ◦ dW i
t = (τ +Du) dt (8a)

∇3 · u3 = 0 (8b)
∂p

∂z
= −g(1 + ρ′/ρ0) (8c)

dtT + u3 · ∇3Tdt +
∑
i

ξi · ∇3T ◦ dW i
t = FT (8d)

Gu is the stochastic forcing given by:

Gi = ξi · ∇3u + f k̂× ξi +∇ξi · u +∇
∫ 0

z

∂ξi
∂z

· udz′ (9)

This forcing adds kinetic energy to the system at a rate given by u·
∑

iGi◦dW i
t .

We plot this below for a simulation on 1/4◦ grid with ξi calculated from a 1/8◦

simulation:

We see that the forcing is acting where needed to increase the kinetic energy.
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