









# Emergency shelter selection in the context of seismic risk. Case study – Bucharest, Romania

Diana Popovici, Iuliana Armas, Toma-Danila Dragos, Alexandru Gavris

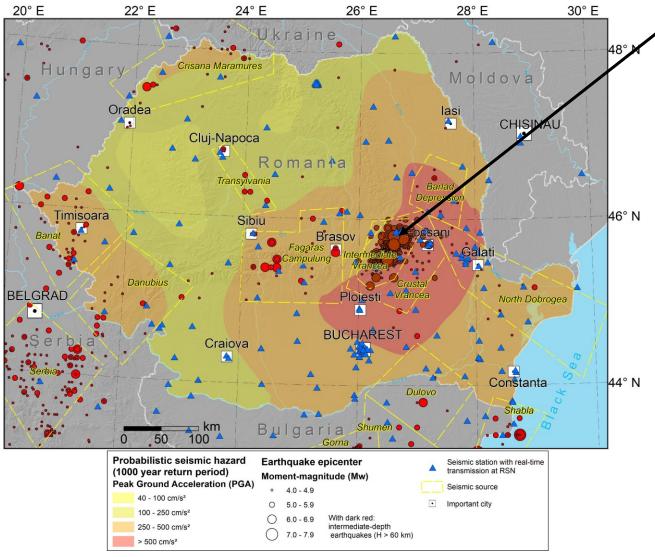


EGU2020 – Sharing Geoscience online

## Objectives

- First attempt
- Identify suitable areas for installing first aid centres in case of a major disaster
- Increase the preparedness of the authorities




## The study area



- In South-Est of Romania
- The capital
- 2+ mil. Inhabitants
- Many buildings are old and damaged



## The seismic risk



(Toma-Danila et al., 2018)

- Highly exposed to Vrancea
  earthquakes
  - intermediate-depth earthquakes with moment-magnitudes (Mw) of up to 8.1 occur, at a statistical rate of 2–3 events with Mw>7 per century
- High population density
- Many old and vulnerable buildings to earthquakes:
  - > 31430 residential buildings constructed prior to 1946 (pre-code period), 294 having more than 4 storeys - a vulnerable category due to long fundamental periods of intermediate-depth Vrancea earthquakes (2011 census data)

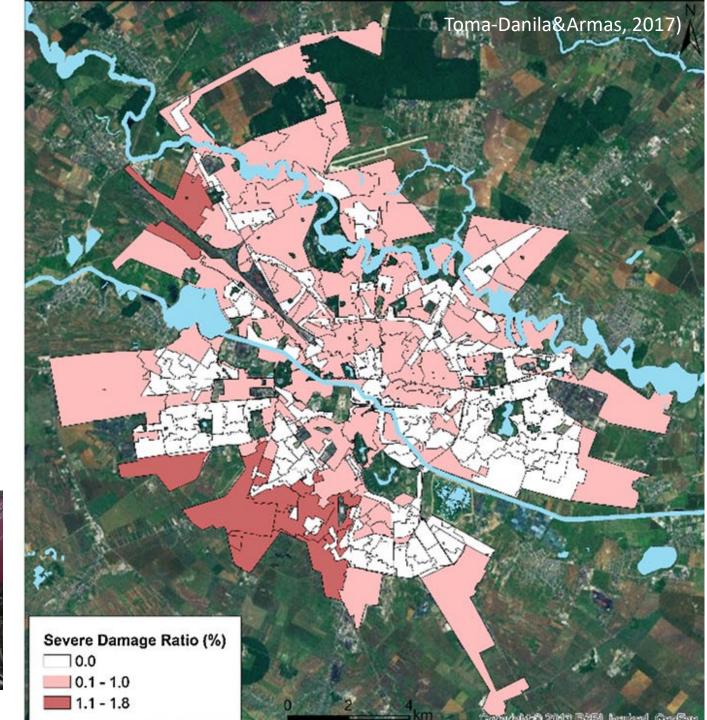
→ The most vulnerable European capital to earthquakes



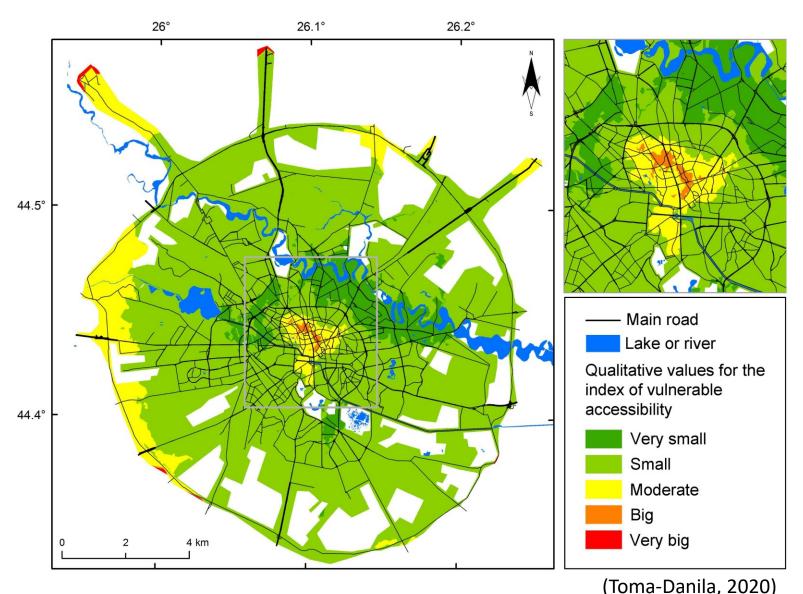
- Bucharest city was affected by several intense earthquakes e.g.:
  - 1802 (Mw aprox. 7.9)
  - 1838 (Mw 7.5)
  - 1940 (Mw 7.4): 300 500 deaths and 183 affected buildings
  - 1977 (Mw 7.2): 1.400 deaths and 33 collapsed buildings
  - Next ???
- In a case of a severe earthquake, the emergency hospitals could not deal with the high number of victims
- Some areas might be isolated due to debris, so local first-aid centers are needed



## Data

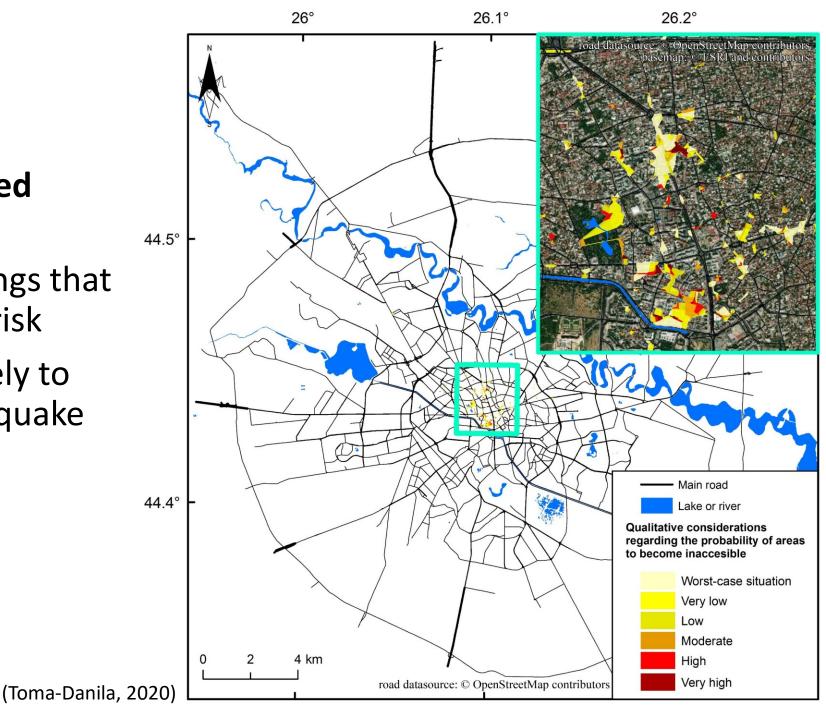

- 2011 census data
- OSM data
- Vectors derived from orthophotoplans, city plans
- Interviews with fire fighters
- ILWIS Software




## The analysis

- Physical vulnerability (Toma-Danila&Armas, 2017, using SeisDaRo System)
  - Construction period
  - Height
  - Construction materials
  - Capacity and fragility functions
- → The higher the physical vulnerability, the higher the probability of more victims

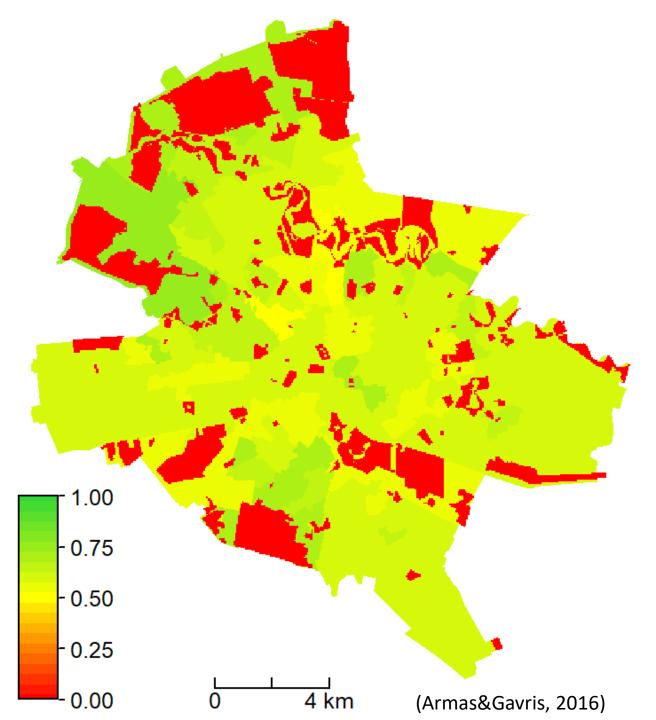





- Accesibility (Toma-Danila et al., 2020)
- Road accessibility the difficulty to reach specific areas by emergency intervention forces
- Location of emergency hospitals
- Location of fire stations
- Different traffic conditions (night time, 8 AM Monday and 6 PM Monday typical conditions






- Distance from the obstructed areas (Toma-Danila, 2020)
- The official list of the buildings that are in the I class of seismic risk
- These buildings are very likely to collapse at a stronger earthquake





- Socio-economic vulnerability (Armas&Gavris, 2016, on 2011 Census data)
  - Social (dwelling density; widows; elderly; room occupancy per household; females)
  - Education (minimum education, unemployed, more than 3 children)
  - Housing (housing density; room area/person, household room area; privat big households)
  - Social dependence (dependent people; children)

→ The higher the social vulnerability, the greater the need for first aid centres



- Other factors distance from:
  - Fuel stations
  - Pharmacies
  - Main hospitals
  - Other health units (private hospitals, small hospitals, specialized etc.)
  - Fire-fighter units

#### • Locations – distance from:

- Indoor (schools and churches)
- Outdoor (parks, parking lots supermarket, public, private etc.; both over 1.000 sqm)



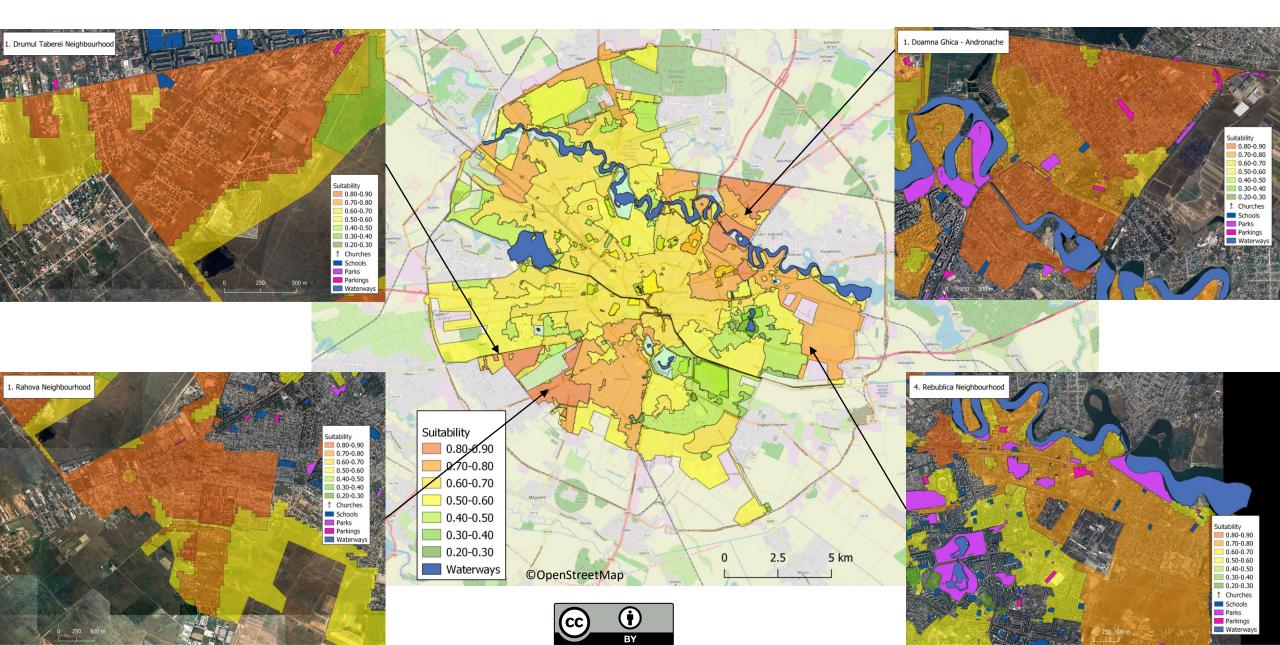
### Methodology – standardization

 $(\mathbf{i})$ 

ΒY

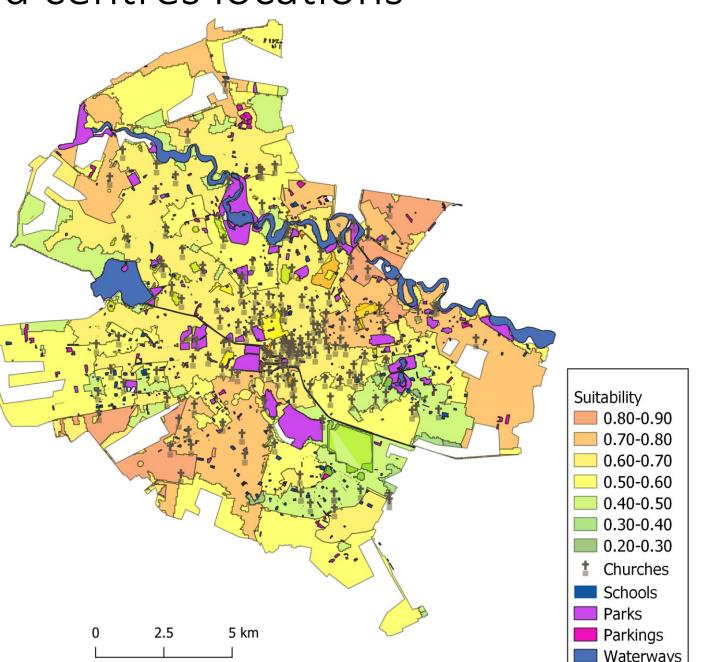
(cc)

| No.   | Criteria                              | Factor      | Standardization method   |
|-------|---------------------------------------|-------------|--------------------------|
| 1     | Socio-economic vulnerability          | Benefit     | Maximum                  |
| 2     | Physical vulnerability                | Benefit     | Maximum                  |
| 3     | Accesibility                          | Cost        | Maximum                  |
| 4     | Distance from the obstructed areas    | Benefit     | Maximum                  |
| 5     | Other factors                         |             |                          |
| 5.1   | Distance from fuel stations           | Combination | Combination – 500 – 1500 |
| 5.2   | Distance from pharmacies              | Cost        | Maximum                  |
| 5.3   | Distance from main hospitals          | Cost        | Maximum                  |
| 5.4   | Distance from other health care units | Cost        | Maximum                  |
| 5.5   | Distance from fire-fighters units     | Cost        | Maximum                  |
| 6     | Locations                             |             |                          |
| 6.1   | Indoor                                |             |                          |
| 6.1.1 | Distance from kindergartens           | Cost        | Maximum                  |
| 6.1.2 | Distance from gymnasiums              | Cost        | Maximum                  |
| 6.1.3 | Distance from highschools             | Cost        | Maximum                  |
| 6.1.2 | Distance from churches                | Cost        | Maximum                  |
| 6.2.  | Outdoor                               |             |                          |
| 6.2.1 | Distance from parks                   | Cost        | Maximum                  |
| 6.2.2 | Distance from parking lots            | Cost        | Maximum                  |


#### Methodology – weighting (Expert judgement)

 $(\mathbf{i})$ 

(cc


| No.   | Criteria                              | Weigh | Weighting method |
|-------|---------------------------------------|-------|------------------|
| 1     | Socio-economic vulnerability          | 0.214 | Rank Sum         |
| 2     | Physical vulnerability                | 0.286 |                  |
| 3     | Accesibility                          | 0.095 |                  |
| 4     | Distance from the obstructed areas    | 0.143 |                  |
| 5     | Other factors                         | 0.214 | Rank Sum         |
| 5.1   | Distance from fuel stations           | 0.067 |                  |
| 5.2   | Distance from pharmacies              | 0.133 |                  |
| 5.3   | Distance from main hospitals          | 0.300 |                  |
| 5.4   | Distance from other health care units | 0.200 |                  |
| 5.5   | Distance from fire-fighters units     | 0.300 |                  |
| 6     | Locations                             | 0.048 | Pairwise         |
| 6.1   | Indoor                                | 0.75  | Rank Sum         |
| 6.1.1 | Distance from kindergartens           | 0.15  |                  |
| 6.1.2 | Distance from gymnasiums              | 0.40  |                  |
| 6.1.3 | Distance from highschools             | 0.40  |                  |
| 6.1.4 | Distance from churches                | 0.06  |                  |
| 6.2.  | Outdoor                               | 0.25  | Rank Sum         |
| 6.2.1 | Distance from parks                   | 0.500 |                  |
| 6.2.2 | Distance from parking lots            | 0.500 |                  |

#### Results – areas with a higher need of first-aid centers



## Results - potential first-aid centres locations

- Areas with a higher need for FAC, but with no alternatives
- Areas with a lower need for FAC, but with many alternatives





## Next...

- In-depth analysis
- Identify the characteristics needed in order for a space to become a first-aid centre
- Correlate the number and the dimensions of the potential places with the people that inhabit that area
- Establish the exact locations of the first-aid centres for each neighbourhood



## Conclusions

- Several areas that are suited (in need) for locating first-aid centres have been identified
- The number of possible alternatives for locating the first-aid centres are very different within each suitable area
- Further investigation has to be done



## References

- Armaş, I., & Gavriş, A. (2016). Census-based social vulnerability assessment for Bucharest. *Procedia Environmental Sciences*, 32, 138-146, doi:https://doi.org/10.1016/j.proenv.2016.03.018
- Toma-Danila D., Armas I., Tiganescu A. (2020) Network-risk: an open GIS toolbox for estimating the implications of transportation network damage due to natural hazards, tested for Bucharest, Romania. Natural Hazards and Earth System Sciences, doi: 10.5194/nhess-2019-409.
- Toma-Danila, D., Cioflan, C.O., Manea E.F. (2018), Estimating the impact of strong earthquakes on the Romanian road network, 16<sup>th</sup> European Conference on Earthquake Engineering, 18-21 June 2018, Thessaloniki, Greece
- Toma-Danila D., Armas I. (2017) Insights into the possible seismic damage of residential buildings in Bucharest, Romania, at neighborhood resolution. Bulletin of Earthquake Engineering, 15(3):1161-1184, doi: 10.1007/s10518-016-9997-1.

