

EXTRINSIC VISCOUS ANISOTROPY OF NEWTONIAN TWO-PHASE AGGREGATES, FABRIC PARAMETRISATION AND APPLICATION TO MANTLE CONVECTION

Albert de Montserrat, Manuele Faccenda

Università degli Studi di Padova

European Research Council Established by the European Commission

RATIONALE

Earth's rock formations are mechanically heterogeneous , i.e. different degrees of extrinsic mechanical anisotropy at different scales

Folding formed by compression of a layers with distinct visco-elastic properties

PROBLEM

Large scale geodynamic models: anisotropy length scale << resolution

Only for specific shapes and non interactive mineral phases

Large scale geodynamic models: do not predict rock fabrics

SOLUTION

Analytical solutions to predict anisotropic viscous/elastic tensors (e.g. Differential Effective Medium)

Average composite morphology

Parametrise fabric

Differential Effective Medium (DEM):
$$\frac{d\mathbb{C}_{DEM}}{d\phi} = \frac{1}{1-\phi}(\mathbb{C}_I - \mathbb{C}_{DEM})\mathbf{A} \quad (\text{McLaughin, 1977})$$
$$\mathbf{A} \rightarrow \text{Strain partitioning } 4th \text{ order tensor } \mathbb{C} \rightarrow (\text{viscous}) \text{ stiffness tensor } \phi \rightarrow \text{volume fraction}$$

O Incompressible flow + Newtonian rheology

© Stokes equations

Finite Differences + particles in cell (Gerya & Yuen, 2007)

3D Models: Evolution - strong inclusions

- $\Delta \eta = 10$
- $\phi = 30\%$

Z

 $\gamma^{max} \approx 12.5 \%$

3D Models: Evolution - strong inclusions

- Tiling effect between inclusions
- Cigar-shaped
 inclusions

> 3D Models: Evolution - weak inclusions

 $\Delta \eta = 1/10$ $\phi = 30\%$ $\gamma^{max} \approx 12.5\%$

___X

Z

- Laminar fabric
- Boudinage

Inclusion shape/inclination (ϕ = 10%)

inclination = angle with respect to horizontal plane $a_i = i$ th principal axis

 ϕ = volume fraction γ = shear strain

FABRIC PARAMETRISATION

FLINN DIAGRAM:

Every circle represents the average shape of the inclusion phase at a given shear strain \log_{10} shape $\approx a + b \log_{10}(a_1/a_2)_{FSE} + c \log_{10}(a_2/a_3)_{FSE}$

Inclusion average shape parametrised as function of the bulk Finite Strain Ellipsoid (FSE) and ~ independent of ϕ and $\Delta\eta$

FLINN DIAGRAM:

Every circle represents the average shape of the inclusion phase at a given shear strain

FABRIC PARAMETRISATION

 $\log_{10} \text{shape} \approx a + b \log_{10}(a_1/a_2)_{FSE} + c \log_{10}(a_1/a_2)_{FSE}^2 + d \log_{10}(a_2/a_3)_{FSE} + e \log_{10}(a_2/a_3)_{FSE}^2 + f\phi + g\Delta\eta + h\Delta\eta^2$

Inclusion average shape parametrised as function of the bulk Finite Strain Ellipsoid (FSE), volume fraction ϕ and viscosity contrast $\Delta \eta$

🔲 Weak inclusions ——> planar fabric ——> strain localisation

- Strong inclusions cigar-shaped
- The fabric can be parameterised as a function of shear strain, volume fraction and viscosity contrast
- Anisotropic viscous tensor of Newtonian-isotropic two-phase composites can be computed averaging the inclusion shape and using the DEM (max. errors ~10-15%)

Finite Strain Ellipsoid

 $a_i = i$ th eigenvalue of the FSE

 $v_i = i$ th eigenvector of the FSE

Stokes equations:

- Incompresible
- Lagrangian Finite Element Method
- Newtonian Rheology
- $\rho = \rho_o (1 \alpha \Delta T)$

Methods:

- 1. Isotropic
- Anisotropic (fabric defined @ t=0; does not evolve with time)
- 3. Anisotropic (isotropic @ t=0; fabric evolves following parametrisation))

APPLICATION TO GEODYNAMIC MODELS

(1) Isotropic

(2) Anisotropic (constant fabric)

(3) Anisotropic (evolving fabric)

APPLICATION TO GEODYNAMIC MODELS

