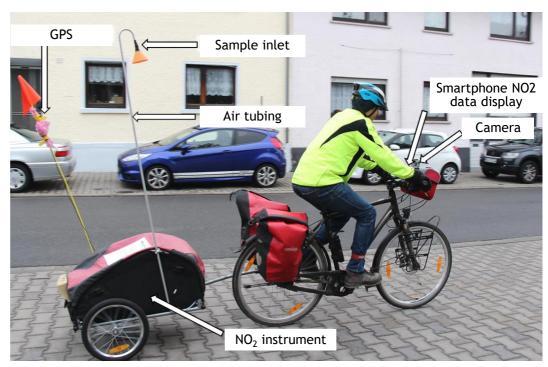


Observation of NO₂ air pollution distribution maps in cities with mobile ICAD bicycle measurements

Denis Pöhler, Oliver Fischer, Sven Riedner, Martin Horbanski, Johannes Lampel, Stefan Schmitt, and Ulrich Platt

Why observing NO₂ distribution maps?

- NO₂ is one of the most critical air pollutant in urban areas
- Main source is traffic
- Very high spatial NO₂ variability
- NO₂ typical only observed at few local measurement stations
- Smaller cities have often even no measurements at all
- Investigate new locations for long term NO₂ monitoring
- Electrochemical sensors are to inaccurate to provide reliable air pollution levels
- Passive sampler require long observation times and existing knowledge of appropriate locations
- Validation of modelled NO₂ distributions



Mobile bicycle measurements

- Using a bicycle as a mobile measurement station on the footpath
- Sampling point ~1.7m
- NO₂ data point every 2 seconds
- Repeated measurements on a fixed route with varying:
 - Days of the week
 - Time of Day
 - Weather conditions
 - Traffic
 - → Cover most typical air pollution situations
- ~ 20 to 40 repetitions over few weeks

NO₂ Instrument

Requirements:

- Mobile, robust to vibration
- High accuracy min. 1ppb/ 2µg/m³
- Fast response of seconds

- Calibration and zero point drift free
- Low power, 12V operation
- Fast warm-up

Mobile ICAD NO_2 / NO_x analyser:

Accuracy	better 0.5 ppb @ 2 sec
Zero-point / calibration drift	<0.1ppb / week
Response time (0-90%)	~2 sec
Calibration	"intrinsic" DOAS calibration, optical light path determination
Power requirement	< 30 W, 12 V
Operating temp. range	-10 °C - 40 °C
Warm-up time	< 1 min.

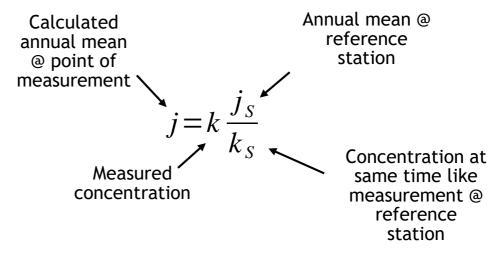
Example study - city Walldorf, Germany (Dec. 2018 - Feb. 2019)

Small city with ~16.000 inhabitants, no NO_2 measurements before

measurement route: 16km repeated measurements: 40 (over 3 months)

 \rightarrow Show high temporal and spatial variation (like expected)

 \rightarrow Average & derive extrapolated annual mean

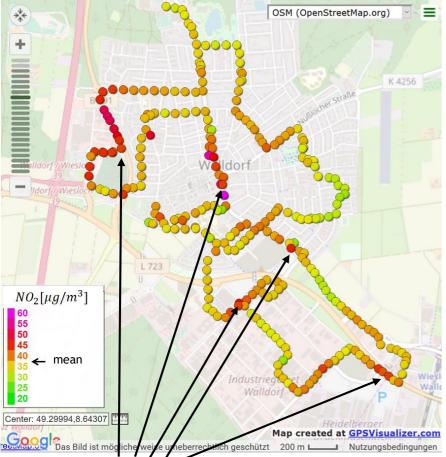


Calculate "extrapolated" annual mean concentration

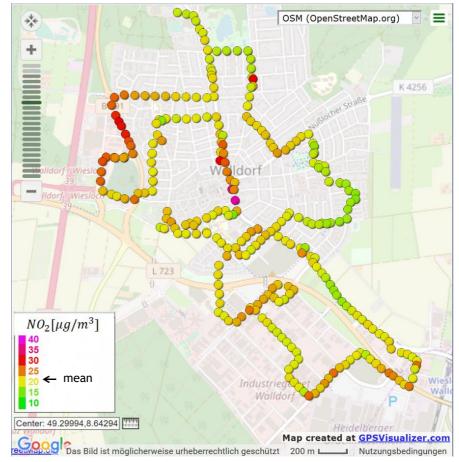
- Each data point (2s) is calculated to an annual mean conc. at this location
- Use NO₂ measurement data of a reference measurement station close by
- Basic idea:

temporal NO₂ variation are dominated by meteorology and traffic density \rightarrow these are comparable between reference station and sampling location

 \rightarrow apply rule of proportion:



• Average extrapolated annual mean values for each location (70x70m²grid)


Results

Average of measurements

- Hot-spots identified (exist also in such small cities)
- In general relatively low NO₂ level
 Airux

Extrapolated annual mean conc.

 Extrapolation removes NO₂ overestimation due to winter & mainly daytime measurement period

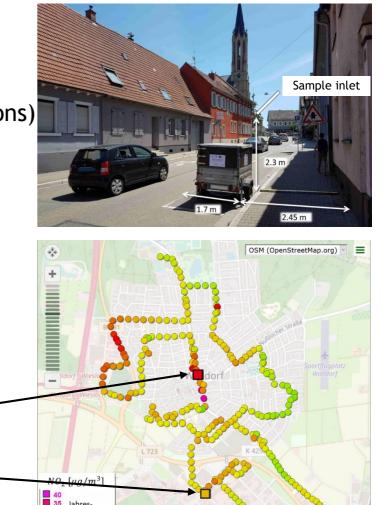
Validation with stationary measurements

- at two "hot spot" locations stationary NO₂ measurements with a trailer
- Measurements over few months (with interruptions)
 → extrapolate annual mean

22

22

stationary


Mobile

2019

measurements July - Nov. 2019

measurements

Dec. 2018 - Feb.

öglicherweise urheberrechtlich geschützt 200 m L

mittelwert extrapoliert

Center: 49.30055.8.64328

10

Google

 \rightarrow Good agreement to mobile meas. results

location

Dietmar-Hopp-Allee

Airyx

35

30

25

20

15

10

5

0

31

27

Schwetzinger Straße

 $\overline{c}xtrapolated annual mean NO_2 [mg/m³]$

Map created at GPSVisualizer.com

Nutzungsbedingu

Example larger city Mannheim + Lufwigshafen, Germany

Average of measurements Extrapolated annual mean conc. $NO_2[\mu g/m^3]$ $NO_2[\mu g/m^3]$ extrapolated measured Emear mear **MA-Friedrichsring MA-Friedrichsring** LU-Heinigstraße LU-Heinigstraße

- Two measurement stations (MA-Friedrichsring and LU-Heiningstraße) are indicated which were passed during the measurement, 30 measurement trips
- Extrapolated annual mean correlate within 15% to measurement station

Conclusion

- ICAD NO₂ analyser allow relative simple mobile measurements with a bike
- NO₂ distribution maps can be derived
- Repeating measurements on a fixed track at different: times of day, meteorological conditions, ... \rightarrow cover different air pollution situations
- Extrapolate to annual mean NO_2 concentration along the track using data from a reference measurement station
- Derived annual mean values were validated with stationary measurements and agree within 10 -15% \rightarrow sufficient reliable NO₂ distribution maps
- Such studies can fill the gap in observations / air pollution monitoring
- Example result show that also small cities have NO₂ hot-spots
- Larger cities show that measurement stations are often not at the highest polluted streets

