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1. Introduction

Differential stress Ac

v

Elasto-
Frictional
Regime

\ Fluids

Fluids \ oSN ’
==

. Frictional Sliding

(unyy) pdag

Semibrittle
Regime

Crystal-
Plastic
Regime

Modified after Sibson (1977
fred af (1977 Modified after Kohlstedt et al. (1995)

\4

‘ Fluids can induce depth fluctuations of the BDTZ




2.1 Geology of Olkiluoto Island
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The Paleoproterozoic bedrock is deformed by intense network of brittle
fault zones (BFZ) as a result of a complex history of structural overprinting
and reactivation. Two different sets of brittle structures were recognized: 1)
subvertical faults striking N-S to NW-SE and younger i1) low-angle normal
faults, striking from E-W to NE-SW.
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2.2 Studied fault system
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Because of their excellent exposure, a set of sub-vertical conjugate brittle deformation zones were used as analogues of
the regional faults striking N-S to NW-SE:
* A N-S-trending sinistral brittle deformation zone overprints and reactivates a dextral mylonitic precursor related to

. earlier, localized ductile deformation: BFZ045 (Prando et al. 2020).
This study

« A NW-SE dextral brittle deformation zone cuts across the metamorphic foliation without exploiting any ductile
precursor: BFZ300 (Marchesini et al. 2019).



2.3 Major tectonic events: paleostress tensor reconstructions
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The bedrock of Olkiluoto experienced a complex hystory of reactivation
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3.1 Wall rock

Drill core structural analysis
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FC 1is decorated by two distinct
generations of quartz veins (Qtz I and
Qtz II). Qtz I from the FC shows the
same mesoscopic appearance of Qtz I
in the DZ. Qtz II is younger and has a
milky-white appearance.
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Less Deformed Qtz I
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* Qtz I-DZ vein shows both elongated and blocky textures.
*  (Grain size between 200 um and 3 mm.
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*  Sericite microfractures cross-cut Qtz I crystals.

* Medial lines (ML) are locally visible, suggesting repeated
crack and seal.

* Internally deformed crystals showing incipient bulging and
intracrystalline fracturing.




3.4 Microstructural analysis: Qtz I fault core
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3.4 Microstructural analysis: Qtz I fault core
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@ * New grains sealing the fractures reflect the combined effect of neocrystallization by nucleation and growth
in fractures and by dynamic recrystallization (SGRR).
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*  Coarser grain size (up to a few mm) and straight grain boundaries.

*  Scarse internal deformation (internal growth structures are visibles).

* Pervasive fracturing (also as healed fractures) highlighted by
cathodoluminescence.
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4.1 The study of synkinematic fluids: fluids composition
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4.2 The study of synkinematic fluids: mineral-pair geothermometry
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Chemical data on suggest distinct fluid compositions.
Geothermometric constrains on quartz-chlorite pair
shows that they precipitated from fluids with distinct
temperatures. The maximum temperature is from the
Qtz I-chlorite pair from the fault core.
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4.3 The study of synkinematic fluids: fluid pressure estimates
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5. Fluid controlled strain localization
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5. Fluid controlled strain localization

n-cycles of viscous and
frictional deformation under
overall ductile conditions
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Fluid pressure fluctuation cycles within an overall ductile environment at the BDTZ triggered
brittle—ductile cyclicity via fracturing, veining and crystal—plastic deformation, before renewed
and fluid-induced embrittlement.



5. Fluid controlled strain localization
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Later exhumation and cooling of the fault system to fully brittle conditions was
aided by selective reactivation of the core and Qtz I emplacement along the pre-
existing principal slip zones, weakest part of the fault. We correlated this stage to
Stage 2 by Mattila and Viola (2014), i.e. a second brittle stage during which a c.
N-S to NNE-SSW-oriented episode of transpressional deformation affected
southwestern Finland.
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Conclusions :
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* Faulting results from embrittlement due to fluid overpressure followed by fluid rock interaction during
multiple reactivation events.

e This fault-valve behaviour at the brittle-ductile transition led to a strain localization in which plastic
deformation combined with fracturing and cementation, leading to progressive strength recovery and
sealing of the fault zones which promoted brittle-ductile cyclicity.
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