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1. Introduction

Modified after Sibson (1977)
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Modified after Kohlstedt et al. (1995)
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2.1 Geology of Olkiluoto Island

The Paleoproterozoic bedrock is deformed by intense network of brittle

fault zones (BFZ) as a result of a complex history of structural overprinting

and reactivation. Two different sets of brittle structures were recognized: i)

subvertical faults striking N-S to NW-SE and younger ii) low-angle normal

faults, striking from E-W to NE-SW.

Image courtesy of SKB

Nuclear waste disposal in crystalline basement:

the Scandinavian multi-barrier approach

Final project of the Olkiluoto deep nuclear waste repository



2.2 Studied fault system
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Because of their excellent exposure, a set of sub-vertical conjugate brittle deformation zones were used as analogues of

the regional faults striking N-S to NW-SE:

• A N-S-trending sinistral brittle deformation zone overprints and reactivates a dextral mylonitic precursor related to

earlier, localized ductile deformation: BFZ045 (Prando et al. 2020).

• A NW-SE dextral brittle deformation zone cuts across the metamorphic foliation without exploiting any ductile

precursor: BFZ300 (Marchesini et al. 2019).

This study



modified after Lahtinen et al. (2005), Mattila and Viola (2014) and Skytta and Torvela (2018)

Polyphasic ductile 
deformation:

This study

2.3 Major tectonic events: paleostress tensor reconstructions

The bedrock of Olkiluoto experienced a complex hystory of reactivation



3.1 Wall rock
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3.2 Fault architecture View to E
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in the DZ. Qtz II is younger and has a

milky-white appearance.
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3.3 Microstructural analysis: Qtz I damage zone 
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• Qtz I-DZ vein shows both elongated and blocky textures.

• Grain size between 200 µm and 3 mm.

• Sericite microfractures cross-cut Qtz I crystals.

• Medial lines (ML) are locally visible, suggesting repeated

crack and seal.

• Internally deformed crystals showing incipient bulging and

intracrystalline fracturing.
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3.4 Microstructural analysis: Qtz I fault core 
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• New grains sealing the fractures reflect the combined effect of neocrystallization by nucleation and growth

in fractures and by dynamic recrystallization (SGRR).

3.4 Microstructural analysis: Qtz I fault core 

200 µm200 µm

EBSD

Intercrystalline

bands

4



3. Microstructural analysis: Qtz II fault core

Growth structures
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• Coarser grain size (up to a few mm) and straight grain boundaries.

• Scarse internal deformation (internal growth structures are visibles).

• Pervasive fracturing (also as healed fractures) highlighted by

cathodoluminescence.
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4.1 The study of synkinematic fluids: fluids composition
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4.2 The study of synkinematic fluids: mineral-pair geothermometry
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4.3 The study of synkinematic fluids: fluid pressure estimates
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5. Fluid controlled strain localization

We correlated this deformation stage to the earliest onset of brittle conditions

in southwestern Finland c. 1.75 Ga ago, under overall NW-SE to NNW-SSE

transpressive conditions (Stage 1 of Mattila and Viola, 2014) .

modified after Mattila and Viola (2014)



BFZ300 structural evolution
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Fluid pressure fluctuation cycles within an overall ductile environment at the BDTZ triggered

brittle–ductile cyclicity via fracturing, veining and crystal–plastic deformation, before renewed

and fluid-induced embrittlement.

5. Fluid controlled strain localization
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Later exhumation and cooling of the fault system to fully brittle conditions was

aided by selective reactivation of the core and Qtz II emplacement along the pre-

existing principal slip zones, weakest part of the fault. We correlated this stage to

Stage 2 by Mattila and Viola (2014), i.e. a second brittle stage during which a c.

N-S to NNE-SSW-oriented episode of transpressional deformation affected

southwestern Finland.



• Faulting results from embrittlement due to fluid overpressure followed by fluid rock interaction during 

multiple reactivation events. 

• This fault-valve behaviour at the brittle-ductile transition led to a strain localization in which plastic

deformation combined with fracturing and cementation, leading to progressive strength recovery and

sealing of the fault zones which promoted brittle-ductile cyclicity.

Conclusions

Sharing Geoscience Online 4-8 May 2020
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