Does long-term soil warming affect microbial element limitation? A test by short-term assays of microbial growth responses to labile C, N and P additions

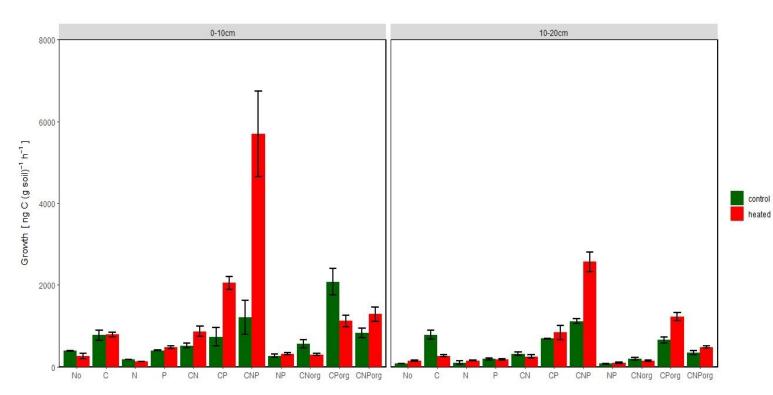
Chupei Shi, Carolina Urbina Malo, Ye Tian, Shasha Zhang, Marilena Heitger, Steve Kwatcho Kengdo, Werner Borken, Jakob Heinzle, Andreas Schindlbacher, Wolfgang Wanek

© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

TERRESTRIAL ECOSYSTEM RESEARCH

terila

Method for determining microbial growth rate:


¹⁸O incorporation rate into DNA

- All substrates are dissolved in 20 atom% $\rm H_2^{18}O$
- Atomic ratio of C/N/P in substrates is 6/1/1
- Amount of C added = microbial biomass C (C_{mic})
- DNA quantified by the Picogreen fluorescence assay 24 hrs after incubating soils with substrates
- Growth rate calculated based on a linear relationship between the microbial DNA and the microbial biomass C

Substrate addition	Total addition (g g soil C _{mic} -1)		
	С	Ν	Р
No addition control	0	0	0
Glucose	1	0	0
NH ₄ Cl	0	0.19	0
KH ₂ PO ₄	0	0	0.43
Glucose + NH ₄ Cl	1	0.19	0
Glucose + KH ₂ PO ₄	1	0	0.43
Glucose + NH ₄ Cl + KH ₂ PO ₄	1	0.19	0.43
NH ₄ Cl + KH ₂ PO ₄	0	0.19	0.43
Glucosamine	1	0.19	0
Glucose-6-P	1	0	0.43
Glucosamine-6-P	1	0.19	0.43

Result

- Stronger C-limitation of microbial growth in heated than in control plots in topsoil (0-10 cm), however, this pattern is reversed for subsoil (10-20 cm).
- Even P addition alone stimulated significant growth response in heated topsoil
- Shift from C-only limitation to CP colimitation after 15 yrs warming.
- Extra growth stimulation by CNP addition

In terms of inorganic and organic amendments:

More rapid microbial growth response was induced by Glc + inN (CN) than glucosamine (orgCN), similar for Glc + inNP (CNP) and glucosamine-6-phosphate (orgCNP), probably due to low active transporters for glucosamine and glucosamine-6-P uptake or little mineralization of these two substances within 24 hrs.

Possible explanations for warming-induced CP co-limitation:

- N is supplied rapidly enough through enhanced N mineralization, P supply via weathering and other pathways cannot keep up.
- Enhanced abiotic phosphate immobilization constrained Pi availability in soil
 - A parallel experiment based on ³³P pool dilution method carried out by Tian et al., demonstrated that warming:
 - 1) Increased abiotic phosphate immobilization (sorption on surfaces)
 - 2) decreased gross phosphate mobilization and microbial phosphate uptake
 - 3) increased microbial phosphatase production

However, the mechanism underlying enhanced abiotic Pi immobilization is not clear. Further analysis of microbial biomass P, DOP, DIP, TP and minerology data are required.

