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11 different aircraft campaigns have been used to investigate how the aerosol composition
and aerosol pH changes from polluted to remote locations. These campaigns stretch a
range of locations, from urban areas (MILAGRO—Mexico City, CalNex—Los Angeles,
WINTER—New York and northeastern US, and KORUS-AQ—Seoul) to remote continental
regions (ARCTAS-A, ARCTAS-B, INTEX-B, DC3, and SEAC*RS), to remote oceanic regions
(ATom-1 and ATom-2). The advantages of these missions is that they have both aerosol
chemical composition (Aerodyne AMS) and gas-phase measurements of HNO3 for all and
NH3 for CalNex, and measurements ranging from near surface (100 — 300 m) to near the

tropopause (10 — 12 km).
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composes largest fraction of PM (Jimenez et
al., Science, 2009)

* Focused on urban OA production & sources
(Nault et al., ACP, 2018) and global OA
production, source, & health impacts (Nault
et al., in review)

in submicron, dominate by sulfate (SO,),
nitrate (NO;), and

Aerosol controls many processes, including radiative balance, cloud formation and lifetime,
fertilization, health affects, visibility, and boundary layer dynamics. To understand how
these processes are impacted by aerosol, both the composition and concentration, and
what emissions and chemistry impacts the composition and concentration, need to be

known.

Recent work has shown the importance of the inorganic fraction of the aerosol as well as
our lack of understanding in what controls the concentration we observe in the inorganic

fraction.
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The inorganic fraction composes an important to dominating fraction of the submicron
aerosol mass concentration around the world. However, there is a lack of observations
throughout the remote ocean, throughout different levels of the troposphere, and the
remote continental regions (Siberia, throughout Africa and South America, etc.) as
observational constraints to compare against chemical transport models to investigate
what aspects are uncertain when it comes to what controls the inorganic fraction.



lmnnrtanrcra nf inAnraanic narncnl +tn tho atmnenhara (o7
IIIIPUILGIIbC Ul IIIUI50||lb acliuUuouUl LU LIIT GLIIIUD}JIICIC «
University
2 u!Colorz:u
and earth system—Chemistry ]
_(c9=g
- Iron
o . .
Heterogeneous e . o | dissolution
2 = @
Uptake 2. |s 4
i = S s —— Aldehyde
5 2 3 s
O - Diol
a. . 0~
= IS - | /
I
3 =
§ /- Absorption of
g brown carbon
Qo
Fraction of S(IV) a < /
. — X(SO. 0) — SO, =
Sulfate fraction & oo L 5 g B J
oxidation 8 - = e
— 05 +8(iV) H,0, +S(iV) =
----- Fe(lll) + S(IV)- - N:n(?l)+S(IV) = 2 i 2 4 s
—- NO, + S(IV) 1 =
o
— Phase separation of
o 2 ° 2 4 6 _ organic compounds
g o =i
o S
ionof X o 7 55
Fraction o Inorganics NH; -0 NO, % Sg References for curves:
in particle phase Chl  —O- Nitite $2 Bertram and Thornton, ACP, 2009
c ) g Thornton et al., JGR, 2008
c 82 Meskhidze et al., GRL, 2003
& £e Gaston et al., EST, 2014
[ e [ Guo etal., ACP, 2017
fre ! Ackendorf et al., ESTL, 2017
2 0 2 4 ¢ 0 2 4 6 Losey et al., JPCA, 2018
Nault et al., in prep. pH pH Seinfeld and Pandis, 2006

One important property the inorganic aerosol controls is aerosol pH.

Aerosol pH impacts many chemical and physical processes, as highlighted above from a

literature review and compilation. This includes organic uptake, such as IEPOX, inorganic
uptake, iron dissolution, oxidation of S(1V) to S(VI), inorganic partitioning, whether organic
aerosol will absorb UV light or not, and phase separation.
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However, similar to the aerosol composition, there is a lack of observations pertaining to
aerosol pH around the world. Part of this is the analytical challenge in measuring aerosol
pH. The other part is that the best way to estimate aerosol pH is w/ thermodynamic
models, but to estimate reliable aerosol pH, both aerosol composition/mass concentration
as well as the volatile gases (e.g., HNO3 and/or NH3) need to be measured, limiting where
aerosol pH can be estimated.
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In this study, three I've looked at three questions.

10
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First, we’ll focus on the composition.

11
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11 different aircraft campaigns have been used to investigate how the aerosol composition
and aerosol pH changes from polluted to remote locations. These campaigns stretch a
range of locations, from urban areas (MILAGRO—Mexico City, CalNex—Los Angeles,
WINTER—New York and northeastern US, and KORUS-AQ—Seoul) to remote continental
regions (ARCTAS-A, ARCTAS-B, INTEX-B, DC3, and SEAC*RS), to remote oceanic regions
(ATom-1 and ATom-2). The advantages of these missions is that they have both aerosol
chemical composition (Aerodyne AMS) and gas-phase measurements of HNO3 for all and
NH3 for CalNex, and measurements ranging from near surface (100 — 300 m) to near the

tropopause (10 — 12 km).
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Chemical Formulas

Assumed: Assumed: Assumed:

H,SO, (NH4)HSO, (NH,),S0O,

Actually: Actually: Actually:

H,SO, + H,SO, + (NH,)HSO, +  (NH,),S04 +

(NH,4)HSO, NH,NO, (NH4)HSO, + NH,NO,

Briefly, ammonium balance is introduced, as this is the first metric that is discussed for the
measurements. Ammonium balance is defined as the charge balance, in molar units, of the
main cation ammonium to the main anions sulfate and nitrate. An ammonium balance of 1
is defined as ammonium’s charge completely balanced by nitrate and sulfate; however, due
to thermodynamics and the difficulty of measuring hydronium ions, the actual chemical
composition will be different than pure ammonium sulfate and ammonium nitrate
(assumed vs actual). A thermodynamic model provides valuable insight into what the
actual chemical formula of the aerosol is compared to what is assumed by ammonium
balance.

13
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In the next slide, pie charts to compare the various campaigns will be shown. However,
unlike the typical pie chart that is in mass concentration, these pie charts are representing
the charge balance of the inorganic aerosol. E.g., this example from Mexico City, the
ammonium charge is completely balanced by nitrate and sulfate, as ammonium = nitrate +
2xsulfate. However, keep in mind, that the actual composition will be different due to
thermodynamics.

14
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First, I'll show the urban regions. For all the urban regions, the ammonium charge is
balanced by nitrate and sulfate.

15
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Moving to continental background observations, the nitrate charge balance decreases. This
is due to moving away from NOx emission sources, moving the equilibrium as ammonium
nitrate is volatile. Also, the ammonium starts decreasing as the air masses move from
ammonia emission sources (urban areas, agriculture, etc.).
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Going to the remote ocean regions, outside of pollution transport regions (e.g., northern
Atlantic) or areas impacted by biomass burning (e.g., equatorial Atlantic), sulfate dominates
the charge to the point that there is almost no ammonium (Antarctica). This suggests that

that hydrogen is becoming important in maintaining a charge balance.
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As that is a lot of pies, here is a summary, where each region has been averaged into the
three pie charts. Urban areas have near complete charge balance; whereas, the continental
regions show the charge balance goes away as sulfate starts dominate the charge, and
ammonium nitrate evaporates. Finally, remote oceanic regions show that sulfate dominates
the charge with minimal nitrate and low ammonium, indicating that hydrogen is becoming
important in maintaining a charge balance.

18
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Instead of campaign or ocean basin average, we can also see how ammonium balance
changes with altitude (or pressure). Plotted here is the average ammonium balance from
ATom-1 and ATom-2, for the Pacific Ocean observations, plotted versus pressure. Red =
ammonium balance = 1 (ammonium charge balancing anion charge) and blue = ammonium
balance = 0 (hydrogen charge balancing anion charge). For pollution and biomass burning
plumes, ammonium balance is high. Outside these plumes, the ammonium balance is very

low.
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Now, we look to see if there is a trend, and specifically, look to see if there is a trend in
chemical coordinates. Chemical coordinates provide a way to minimize the influence of
transport and meteorology on the observations and to focus on emissions and chemistry
that impacts the observations (e.g., Woody et al., ACP, 2016).

For observations collected in the boundary layer (observations between surface and 800
hPa), there is a strong correlation for ammonium balance (y-axis) versus total inorganic
mass concentration (x-axis) for all campaigns. The x-axis is a metric of pollution/emissions,
has higher values are from urban regions and biomass burning and lower values are for
remote regions such as Antarctica. Since ammonium balance decreases as the aerosol is
removed from continental pollution, this suggests that total ammonia (NHx = NH3 + NH4)
emissions decrease while continuous sulfuric acid production occurs. The sulfuric acid
production comes from the slow oxidation of natural and anthropogenic SO2 and the
oxidation of oceanic emissions, such as dimethyl sulfide.

20
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Comparing the slopes from boundary layer (surface to 800 hPa), free troposphere (800 to
400 hPa), and upper troposphere (400 to 250 hPa), | find statistically similar slopes for all
three regions of the atmosphere. This suggests that the emissions and chemistry
controlling ammonium balance is similar for all three regions. Also, the higher ammonium
balance and inorganic mass concentrations observed in free and upper troposphere is due
to injection from biomass burning and/or deep convection.

21
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Next, I'll look at how aerosol pH changes w/ the observations.

22
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Briefly, as | mentioned earlier, best method to estimate aerosol pH is via a thermodynamic
model due to the analytical challenges of measure aerosol pH. For this study, | used the E-
AIM model, which has been compared against ISORROPIA and shown similar values. For
this study, the inputs include aerosol composition/mass concentration (sulfate, nitrate, and
ammonium), gas-phase mixing ratio (HNO3 for all missions and NH3 for CalNex),
temperature, and relative humidity. E-AIM is used to estimate aerosol liquid water and
hydronium ion mass concentration to calculate aerosol pH. The output of the model is
compared w/ observations to determine level of accuracy for the model.

23
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Similar to ammonium balance, to determine if there is a trend for aerosol pH, | plot pH (y-
axis) vs inorganic aerosol mass concentration (x-axis) for the boundary layer (surface to 800
hPa) for all campaigns. There is a strong correlation for aerosol pH vs aerosol mass
concentration, again, showing that as you move from polluted regions (high mass
concentration, urban and biomass burning) to low mass concentration (remote regions,
such as Antarctica), ammonium cation decreases and hydronium increases, making aerosol
more acidic. This further supports that total NHx (NH3 + NH4) emissions decrease as you
move from continental regions.

24
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Again, similar to ammonium balance vs inorganic mass concentration, aerosol pH vs
inorganic aerosol mass concentration for three tropospheric levels show statistically similar

slopes, suggesting similar emission and chemistry is controlling the decrease in pH with
decreasing inorganic aerosol mass concentration.
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Finally, I'll compare the results from the observations with numerous different chemical

transport models.

26
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I've looked 9 different chemical transport models. First, we can see how the model average
compares for ammonium balance over the Pacific Ocean. Again, the observations are the
average ammonium balance observed during ATom-1 and ATom-2 over the Pacific Ocean
for the different pressure levels.

The 9 model average is on right for the similar location the DC-8 sampled over the Pacific.
The 9 model average shows a similar pollution outflow region in the northern Pacific, with
higher ammonium balance. But unlike the observations, the 9 model average generally
shows moderate to high ammonium balance and does not show ammonium balance less
than 0.2 throughout the Pacific troposphere.



Use chemical coordinates to investigate biases

Nault et al., in prep.
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To further investigate the differences between the observations and model, I'll use the
chemical coordinates | introduced earlier. Again, this is to minimize the impact of transport
and meteorology and to really investigate if the differences are due to chemistry and/or

emissions.
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Use chemical coordinates to investigate biases
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To do that, I'll take the slope for ammonium balance versus inorganic mass concentration
for the boundary layer.
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And compare the slope from the observation with the slopes from different chemical
transport models. This minimizes seeing if point to point the models are getting the same
values as the observations, but instead, are the models getting the same trend as
observations.

Taking older models used during AEROCOM |I, the trends from the models are different
than observations. These models either show no change for ammonium balance versus
inorganic mass concentration, or the opposite change (ammonium balance decreasing with
increasing inorganic mass concentration).
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Comparison of the slope with newer chemical transport models improves in that they
mostly show a decreasing trend for ammonium balance versus inorganic mass
concentration.

However, there is still a large offset compared to observations. Thus, though the trends are
similar to observations, the models appear to be estimating higher ammonium balances
than observations indicate.
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The difference in ammonium balances (the offset) can be further explored with a
normalized probability distribution function (PDF). The PDF of ammonium balance for
boundary layer. Note, since the ammonium balance values are less than 1, the PDF values
are greater than 1 so that the sum = 1.

Observations (black) show a spread of ammonium balance from ~0 to ~1. However, the
models do not show this spread, and generally show more occurrences of ammonium
balances > 0.5 (instead of equal occurrence of ammonium balances from 0 to 1).
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This difference in ammonium balance is important due to deliquescence/efflorescence of
inorganic aerosol. Ammonium sulfate salts have different values (ammonium sulfate >
ammonium bisulfate > sulfuric acid), meaning that the models with higher ammonium
balances will have different estimations for amount of aerosol liquid water than
observations.

| used the E-AIM thermodynamic model to estimate at what ammonium balance would be
liquid (yellow background) vs solid (white background) for the average temperature and
relative humidity of the boundary layer.
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| then transposed that estimate of solid vs liquid into the bar graph on right, where |
represent the predicted fraction of inorganic aerosol that is liquid (blue shade) vs solid
(grey shade), where observations are the different shades to better contrast.

The predictions from observation show that ~70% of the inorganic aerosol is liquid. The
older models generally under-predict this fraction while the new models generally better
predict the fraction, in the boundary layer.
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However, outside the boundary layer, where relative humidity decreases, the difference in
ammonium balance for the amount of inorganic aerosol that is liquid vs solid become more
apparent, especially in the upper troposphere. Since the observations predict very low
ammonium balances in the upper troposphere, this leads to very high amount of water in
the inorganic aerosol as sulfuric acid typically retains water for tropospheric conditions.
There are two important things that come from this analysis. First, these differences in
liquid vs solid aerosol between observations and model would impact the models
predictions of radiative balance and liquid phase chemistry (and aerosol pH). Second, these
differences suggest that the models either overestimating NH3 emissions or lifetime.
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Paulot et al., Global Biogeochem.

Cycles, 2015

A paper in 2015 showed that many emission inventories greatly over-predict the NHx
emission from oceanic regions due to the general lack of data in this region.
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Thus, | ran a sensitivity analysis with GEOS-Chem to see how changes in NH3 lifetime and
changes in NH3 emissions will impact ammonium balance. The base case (red) from GEOS-
Chem is compared with increasing the NH3 lifetime (light red) or lowering the NH3
emissions, specifically oceanic NHx oceanic emissions (blue). Increasing the NH3 lifetime
slightly shifts the PDF to the right (higher ammonium balance) whereas lowering the
oceanic emissions strongly shifts the PDF to the left to be more similar to the observations.
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This highlights the shifts.
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A similar analysis of this sensitivity is done for the upper troposphere. Increased NH3
lifetime shifts the PDR all the way to high ammonium balances, similar to boundary layer.
However, unlike boundary layer, decreasing NH3 emissions has no impact on the upper
tropospheric ammonium balance. Thus, something else is leading to the higher ammonium
balances predicted in the model for the upper troposphere (to be determined).

39



&

Iniversity
of Colorad
Boulder

with GEOS-Chem v12
|

* All sensitivity analysis conducted
deposition

\

T~

Lower Emissions

Base

Lower emissions

ocean

4 —
34
2 -

4ad pazijeuLion

to lifetime outside boundary layer

NH, / (2xSO, + NO,)

Nault et al., in prep.

This highlights the results from the sensitivity.

40



— CCSM4 —— GISS-MATRIX —— GISS-ModelE
GEOS-Chem v10 GEOS-Chem v12 GEOS-5
GEQS-Chem TOMAS - --- ESM4

1.0 Boundary Layer
Surface to 800 hPa

Normalized PDF

Aerosol pH

Nault et al., in prep.

Finally, briefly, is the comparison of the predict aerosol pH from the chemical transport
models compared to observations for the Boundary Layer. The models show better
distribution, more similar to observations, than the ammonium balance. However, there
are still high instances of aerosol pH greater than what the observations indicate.
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The higher aerosol pH from the chemical transport would lead to different aerosol
chemistry, if the models included all the processes highlighted here. This indicates the
importance of not only evaluating the models chemical composition vs observations, but
also their chemical properties such as aerosol pH.
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