

Data from AMPERE, SuperDARN and a Scanning Doppler Imager D. D. Billett¹, K. A. McWilliams¹, M. G. Conde²

¹ University of Saskatchewan, ² University of Alaska Fairbanks

Correspondence: daniel.billett@usask.ca

*Dots indicate SuperDARN radar data locations

- SDI alternates imaging of E and **F** regions, giving a near simultaneous look at **neutral** winds in both.

*Example neutral wind fields, looking down on SDI from above

3 - Summary/Conclusions

- During substorm growth when the convection pattern expands, there are **two** forms of ion drag occurring.

Long term ion drag, which is always acting in the ExB direction. Short term ion drag, which acts equatorward with expanding convection. - Ion drag causes neutrals to accelerate in the direction it acts, but **neutral density** varies drastically between **E** and **F** regions.

- Result: E-region neutral winds require iondrag to act **long term**, thus they do not respond strongly to the **short term** expanding plasma convection pattern. F-region neutrals are less dense, and so respond quicker to an ion drag change.

projection)

Bonus Plots: The Whole Event!

UT

